十二指肠贾第虫体内无机磷酸盐转运蛋白及其在ATP合成中的可能作用

IF 1.4 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ayra Diandra Carvalho-de-Araújo, Luiz Fernando Carvalho-Kelly, Claudia F. Dick, José Roberto Meyer-Fernandes
{"title":"十二指肠贾第虫体内无机磷酸盐转运蛋白及其在ATP合成中的可能作用","authors":"Ayra Diandra Carvalho-de-Araújo,&nbsp;Luiz Fernando Carvalho-Kelly,&nbsp;Claudia F. Dick,&nbsp;José Roberto Meyer-Fernandes","doi":"10.1016/j.molbiopara.2022.111504","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Giardia duodenalis</em></span><span><span> is a flagellated protozoan that inhabits vertebrate host intestines, causing the disease known as </span>giardiasis. Similar to other parasites, </span><em>G. duodenalis</em> must take advantage of environmental resources to survive, such as inorganic phosphate (P<sub>i</sub>) availability. P<sub>i</sub><span> is an anionic molecule and an essential nutrient for all organisms because it participates in the biosynthesis<span> of biomolecules, energy storage, and cellular structure formation. The first step in Pi metabolism is its uptake through specific transporters on the plasma membrane. We identified a symporter H</span></span><sup>+</sup>:P<sub>i</sub>-type ORF sequence in the <em>G. duodenalis</em> genome (GenBank ID: GL50803_5164), named <em>GdPho84,</em> which is homologous to <span><em>Saccharomyces cerevisiae</em></span> PHO84. In trophozoites, P<sub>i</sub> transport was linear for up to 15 min, and the cell density was 3 × 10<sup>7</sup> cells/ml. Physiological variations in pH (6.4–8.0) did not influence P<sub>i</sub> uptake. This P<sub>i</sub> transporter had a high affinity, with K<sub>0.5</sub> = 67.7 ± 7.1 µM P<sub>i</sub>. SCH28080 (inhibitor of H<sup>+</sup>, K<sup>+</sup><span>-ATPase), bafilomycin A</span><sub>1</sub> (inhibitor of vacuolar H<sup>+</sup>-ATPase), and FCCP (H<sup>+</sup> ionophore) were able to inhibit P<sub>i</sub> transport, indicating that an H<sup>+</sup> gradient in the cell powered uphill P<sub>i</sub> movement. PAA, an H<sup>+</sup>-dependent P<sub>i</sub><span> transport inhibitor, reduced cell proliferation, P</span><sub>i</sub> transport activity, and GdPHO48 mRNA levels. P<sub>i</sub> starvation stimulated membrane potential-sensitive P<sub>i</sub> uptake coupled to H<sup>+</sup> fluxes, increased <em>GdPho84</em> expression, and reduced intracellular ATP levels. These events indicate that these cells had an increased capacity to internalize P<sub>i</sub> as a compensatory mechanism compared to cells maintained in control medium conditions. Internalized P<sub>i</sub><span> can be used in glycolytic metabolism once iodoacetamide (GAPDH inhibitor) inhibits P</span><sub>i</sub> influx. Together, these results reinforce the hypothesis that P<sub>i</sub> is a crucial nutrient for <em>G. duodenalis</em> energy metabolism.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":"251 ","pages":"Article 111504"},"PeriodicalIF":1.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inorganic phosphate transporter in Giardia duodenalis and its possible role in ATP synthesis\",\"authors\":\"Ayra Diandra Carvalho-de-Araújo,&nbsp;Luiz Fernando Carvalho-Kelly,&nbsp;Claudia F. Dick,&nbsp;José Roberto Meyer-Fernandes\",\"doi\":\"10.1016/j.molbiopara.2022.111504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><em>Giardia duodenalis</em></span><span><span> is a flagellated protozoan that inhabits vertebrate host intestines, causing the disease known as </span>giardiasis. Similar to other parasites, </span><em>G. duodenalis</em> must take advantage of environmental resources to survive, such as inorganic phosphate (P<sub>i</sub>) availability. P<sub>i</sub><span> is an anionic molecule and an essential nutrient for all organisms because it participates in the biosynthesis<span> of biomolecules, energy storage, and cellular structure formation. The first step in Pi metabolism is its uptake through specific transporters on the plasma membrane. We identified a symporter H</span></span><sup>+</sup>:P<sub>i</sub>-type ORF sequence in the <em>G. duodenalis</em> genome (GenBank ID: GL50803_5164), named <em>GdPho84,</em> which is homologous to <span><em>Saccharomyces cerevisiae</em></span> PHO84. In trophozoites, P<sub>i</sub> transport was linear for up to 15 min, and the cell density was 3 × 10<sup>7</sup> cells/ml. Physiological variations in pH (6.4–8.0) did not influence P<sub>i</sub> uptake. This P<sub>i</sub> transporter had a high affinity, with K<sub>0.5</sub> = 67.7 ± 7.1 µM P<sub>i</sub>. SCH28080 (inhibitor of H<sup>+</sup>, K<sup>+</sup><span>-ATPase), bafilomycin A</span><sub>1</sub> (inhibitor of vacuolar H<sup>+</sup>-ATPase), and FCCP (H<sup>+</sup> ionophore) were able to inhibit P<sub>i</sub> transport, indicating that an H<sup>+</sup> gradient in the cell powered uphill P<sub>i</sub> movement. PAA, an H<sup>+</sup>-dependent P<sub>i</sub><span> transport inhibitor, reduced cell proliferation, P</span><sub>i</sub> transport activity, and GdPHO48 mRNA levels. P<sub>i</sub> starvation stimulated membrane potential-sensitive P<sub>i</sub> uptake coupled to H<sup>+</sup> fluxes, increased <em>GdPho84</em> expression, and reduced intracellular ATP levels. These events indicate that these cells had an increased capacity to internalize P<sub>i</sub> as a compensatory mechanism compared to cells maintained in control medium conditions. Internalized P<sub>i</sub><span> can be used in glycolytic metabolism once iodoacetamide (GAPDH inhibitor) inhibits P</span><sub>i</sub> influx. Together, these results reinforce the hypothesis that P<sub>i</sub> is a crucial nutrient for <em>G. duodenalis</em> energy metabolism.</p></div>\",\"PeriodicalId\":18721,\"journal\":{\"name\":\"Molecular and biochemical parasitology\",\"volume\":\"251 \",\"pages\":\"Article 111504\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and biochemical parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166685122000585\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685122000585","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

十二指肠贾第虫是一种有鞭毛的原生动物,栖息在脊椎动物宿主的肠道中,引起贾第虫病。与其他寄生虫一样,十二指肠棘球绦虫必须利用环境资源来生存,如无机磷酸盐(Pi)的有效性。π是一种阴离子分子,参与生物分子的生物合成、能量储存和细胞结构的形成,是所有生物必需的营养物质。Pi代谢的第一步是通过质膜上的特定转运体摄取。我们在G. duodenalis基因组(GenBank ID: GL50803_5164)中发现了一个同源H+: pi型ORF序列,命名为GdPho84,与酿酒酵母PHO84同源。在滋养体中,Pi在15 min内呈线性运输,细胞密度为3 × 107个细胞/ml。pH(6.4-8.0)的生理变化不影响Pi的摄取。该Pi转运蛋白具有较高的亲和力,K0.5 = 67.7±7.1µM Pi。SCH28080 (H+, K+- atp酶抑制剂)、巴菲霉素A1(液泡H+- atp酶抑制剂)和FCCP (H+离子载体)能够抑制Pi的转运,表明细胞中的H+梯度促进了Pi的上坡运动。PAA是一种H+依赖性Pi转运抑制剂,可降低细胞增殖、Pi转运活性和GdPHO48 mRNA水平。缺磷刺激了与H+通量耦合的膜电位敏感性Pi摄取,增加了GdPho84的表达,降低了细胞内ATP水平。这些事件表明,与维持在对照培养基条件下的细胞相比,这些细胞具有更高的内化Pi作为补偿机制的能力。一旦碘乙酰胺(GAPDH抑制剂)抑制Pi内流,内化Pi可用于糖酵解代谢。综上所述,这些结果强化了Pi是十二指肠螺杆菌能量代谢的关键营养素的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inorganic phosphate transporter in Giardia duodenalis and its possible role in ATP synthesis

Giardia duodenalis is a flagellated protozoan that inhabits vertebrate host intestines, causing the disease known as giardiasis. Similar to other parasites, G. duodenalis must take advantage of environmental resources to survive, such as inorganic phosphate (Pi) availability. Pi is an anionic molecule and an essential nutrient for all organisms because it participates in the biosynthesis of biomolecules, energy storage, and cellular structure formation. The first step in Pi metabolism is its uptake through specific transporters on the plasma membrane. We identified a symporter H+:Pi-type ORF sequence in the G. duodenalis genome (GenBank ID: GL50803_5164), named GdPho84, which is homologous to Saccharomyces cerevisiae PHO84. In trophozoites, Pi transport was linear for up to 15 min, and the cell density was 3 × 107 cells/ml. Physiological variations in pH (6.4–8.0) did not influence Pi uptake. This Pi transporter had a high affinity, with K0.5 = 67.7 ± 7.1 µM Pi. SCH28080 (inhibitor of H+, K+-ATPase), bafilomycin A1 (inhibitor of vacuolar H+-ATPase), and FCCP (H+ ionophore) were able to inhibit Pi transport, indicating that an H+ gradient in the cell powered uphill Pi movement. PAA, an H+-dependent Pi transport inhibitor, reduced cell proliferation, Pi transport activity, and GdPHO48 mRNA levels. Pi starvation stimulated membrane potential-sensitive Pi uptake coupled to H+ fluxes, increased GdPho84 expression, and reduced intracellular ATP levels. These events indicate that these cells had an increased capacity to internalize Pi as a compensatory mechanism compared to cells maintained in control medium conditions. Internalized Pi can be used in glycolytic metabolism once iodoacetamide (GAPDH inhibitor) inhibits Pi influx. Together, these results reinforce the hypothesis that Pi is a crucial nutrient for G. duodenalis energy metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
51
审稿时长
63 days
期刊介绍: The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are: • the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances • intermediary metabolism and bioenergetics • drug target characterization and the mode of action of antiparasitic drugs • molecular and biochemical aspects of membrane structure and function • host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules. • analysis of genes and genome structure, function and expression • analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance. • parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules • parasite programmed cell death, development, and cell division at the molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信