{"title":"个性化3D打印辅助导板在辅助骶髂螺钉置入中的设计与应用。","authors":"Mu-Rong You, Zhi-Qiang Fan, Hai-Min Ye, Zhe Wang, Chun-Hua Zou, Xie-Ping Dong","doi":"10.1080/24699322.2022.2102542","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Currently, the sacroiliac screws insertion still faces several challenges in the fixation of pelvic and acetabular injuries. This study was aimed to design a personalized three-dimensional (3D) printing assisted guide plates to assist sacroiliac screws insertion, so as to provide a reference for further clinical applications.</p><p><strong>Methods: </strong>Eight pelvic specimens (5 males and 3 females) of normal adults were used to simulate actual operation. After thin-layer CT scanning, the 3D models of pelvis were established based on the images data. Furthermore, in Mimics 17.0 software, the screw entry points and screw channels of sacroiliac screws were further simulated and designed, and the appropriate range of the posterior superior iliac spine was selected to establish and print the virtual guide plates. Then, the simulated screws insertion was performed <i>in vitro</i>, the pelvic specimens after screws insertion were scanned again by CT, and the effect of screws insertion was further evaluated.</p><p><strong>Results: </strong>A total of 16 sacroiliac screw guide plates were designed and printed, and 48 screws were inserted on both sides. Therein, 45 screws were completely located in the sacral vertebra, which was determined as grade 0, with an accuracy rate of 93.2%. The other 3 screws penetrated the anterior cortex or sacral canal of sacral vertebra, including 2 screws in Grade 1 (4.1%) and 1 screw in Grade 2 (2.1%). Compared with the simulated screw channels, the anterior and posterior offset angles of the cross section were (0.912 ± 0.625) ° and (0.802 ± 0.681) ° respectively, with no significant difference (<i>p</i> > 0.05). The upper and lower offset angles of coronal plane were (1.158 ± 0.823) ° and (1.034 ± 0.908) ° respectively, and there was no significant difference (<i>p</i> > 0.05).</p><p><strong>Conclusions: </strong>3 D printing guide plates assisted sacroiliac screws insertion can enhance the stability of pelvic posterior ring fixation and assist surgeons to reduce the difficulty of operation.</p>","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The design and application of an individualized 3D printing assisted guide plates in assisting sacroiliac screws insertion.\",\"authors\":\"Mu-Rong You, Zhi-Qiang Fan, Hai-Min Ye, Zhe Wang, Chun-Hua Zou, Xie-Ping Dong\",\"doi\":\"10.1080/24699322.2022.2102542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Currently, the sacroiliac screws insertion still faces several challenges in the fixation of pelvic and acetabular injuries. This study was aimed to design a personalized three-dimensional (3D) printing assisted guide plates to assist sacroiliac screws insertion, so as to provide a reference for further clinical applications.</p><p><strong>Methods: </strong>Eight pelvic specimens (5 males and 3 females) of normal adults were used to simulate actual operation. After thin-layer CT scanning, the 3D models of pelvis were established based on the images data. Furthermore, in Mimics 17.0 software, the screw entry points and screw channels of sacroiliac screws were further simulated and designed, and the appropriate range of the posterior superior iliac spine was selected to establish and print the virtual guide plates. Then, the simulated screws insertion was performed <i>in vitro</i>, the pelvic specimens after screws insertion were scanned again by CT, and the effect of screws insertion was further evaluated.</p><p><strong>Results: </strong>A total of 16 sacroiliac screw guide plates were designed and printed, and 48 screws were inserted on both sides. Therein, 45 screws were completely located in the sacral vertebra, which was determined as grade 0, with an accuracy rate of 93.2%. The other 3 screws penetrated the anterior cortex or sacral canal of sacral vertebra, including 2 screws in Grade 1 (4.1%) and 1 screw in Grade 2 (2.1%). Compared with the simulated screw channels, the anterior and posterior offset angles of the cross section were (0.912 ± 0.625) ° and (0.802 ± 0.681) ° respectively, with no significant difference (<i>p</i> > 0.05). The upper and lower offset angles of coronal plane were (1.158 ± 0.823) ° and (1.034 ± 0.908) ° respectively, and there was no significant difference (<i>p</i> > 0.05).</p><p><strong>Conclusions: </strong>3 D printing guide plates assisted sacroiliac screws insertion can enhance the stability of pelvic posterior ring fixation and assist surgeons to reduce the difficulty of operation.</p>\",\"PeriodicalId\":56051,\"journal\":{\"name\":\"Computer Assisted Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/24699322.2022.2102542\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2022.2102542","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
The design and application of an individualized 3D printing assisted guide plates in assisting sacroiliac screws insertion.
Objective: Currently, the sacroiliac screws insertion still faces several challenges in the fixation of pelvic and acetabular injuries. This study was aimed to design a personalized three-dimensional (3D) printing assisted guide plates to assist sacroiliac screws insertion, so as to provide a reference for further clinical applications.
Methods: Eight pelvic specimens (5 males and 3 females) of normal adults were used to simulate actual operation. After thin-layer CT scanning, the 3D models of pelvis were established based on the images data. Furthermore, in Mimics 17.0 software, the screw entry points and screw channels of sacroiliac screws were further simulated and designed, and the appropriate range of the posterior superior iliac spine was selected to establish and print the virtual guide plates. Then, the simulated screws insertion was performed in vitro, the pelvic specimens after screws insertion were scanned again by CT, and the effect of screws insertion was further evaluated.
Results: A total of 16 sacroiliac screw guide plates were designed and printed, and 48 screws were inserted on both sides. Therein, 45 screws were completely located in the sacral vertebra, which was determined as grade 0, with an accuracy rate of 93.2%. The other 3 screws penetrated the anterior cortex or sacral canal of sacral vertebra, including 2 screws in Grade 1 (4.1%) and 1 screw in Grade 2 (2.1%). Compared with the simulated screw channels, the anterior and posterior offset angles of the cross section were (0.912 ± 0.625) ° and (0.802 ± 0.681) ° respectively, with no significant difference (p > 0.05). The upper and lower offset angles of coronal plane were (1.158 ± 0.823) ° and (1.034 ± 0.908) ° respectively, and there was no significant difference (p > 0.05).
Conclusions: 3 D printing guide plates assisted sacroiliac screws insertion can enhance the stability of pelvic posterior ring fixation and assist surgeons to reduce the difficulty of operation.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.