Fekadu Yadetie , Nadja R. Brun , Julia Giebichenstein , Katarzyna Dmoch , Ketil Hylland , Katrine Borgå , Odd André Karlsen , Anders Goksøyr
{"title":"暴露于菲和苯并[a]芘环境下的桡足类Calanus finmarchicus、Calanus glacialis和Calanus hyperboreus的转录组反应","authors":"Fekadu Yadetie , Nadja R. Brun , Julia Giebichenstein , Katarzyna Dmoch , Ketil Hylland , Katrine Borgå , Odd André Karlsen , Anders Goksøyr","doi":"10.1016/j.margen.2022.100981","DOIUrl":null,"url":null,"abstract":"<div><p>Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species <em>Calanus finmarchicus, Calanus glacialis</em> and <em>Calanus hyperboreus</em> represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[<em>a</em>]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 μM) and BaP (0.1 μM). In <em>C. finmarchicus</em> and <em>C. glacialis</em>, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3′-phosphoadenosine 5′-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in <em>C. finmarchicus</em> and <em>C. glacialis</em> but were not affected in <em>C. hyperboreus</em>. However, a larger number of genes and pathways were modulated in <em>C. hyperboreus</em> by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in <em>C. finmarchicus</em> and <em>C. glacialis</em>. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1874778722000599/pdfft?md5=5318cd15fd32225027dedd984991b635&pid=1-s2.0-S1874778722000599-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene\",\"authors\":\"Fekadu Yadetie , Nadja R. Brun , Julia Giebichenstein , Katarzyna Dmoch , Ketil Hylland , Katrine Borgå , Odd André Karlsen , Anders Goksøyr\",\"doi\":\"10.1016/j.margen.2022.100981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species <em>Calanus finmarchicus, Calanus glacialis</em> and <em>Calanus hyperboreus</em> represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[<em>a</em>]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 μM) and BaP (0.1 μM). In <em>C. finmarchicus</em> and <em>C. glacialis</em>, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3′-phosphoadenosine 5′-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in <em>C. finmarchicus</em> and <em>C. glacialis</em> but were not affected in <em>C. hyperboreus</em>. However, a larger number of genes and pathways were modulated in <em>C. hyperboreus</em> by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in <em>C. finmarchicus</em> and <em>C. glacialis</em>. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1874778722000599/pdfft?md5=5318cd15fd32225027dedd984991b635&pid=1-s2.0-S1874778722000599-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778722000599\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778722000599","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene
Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[a]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 μM) and BaP (0.1 μM). In C. finmarchicus and C. glacialis, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3′-phosphoadenosine 5′-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in C. finmarchicus and C. glacialis but were not affected in C. hyperboreus. However, a larger number of genes and pathways were modulated in C. hyperboreus by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in C. finmarchicus and C. glacialis. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.