暴露于菲和苯并[a]芘环境下的桡足类Calanus finmarchicus、Calanus glacialis和Calanus hyperboreus的转录组反应

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fekadu Yadetie , Nadja R. Brun , Julia Giebichenstein , Katarzyna Dmoch , Ketil Hylland , Katrine Borgå , Odd André Karlsen , Anders Goksøyr
{"title":"暴露于菲和苯并[a]芘环境下的桡足类Calanus finmarchicus、Calanus glacialis和Calanus hyperboreus的转录组反应","authors":"Fekadu Yadetie ,&nbsp;Nadja R. Brun ,&nbsp;Julia Giebichenstein ,&nbsp;Katarzyna Dmoch ,&nbsp;Ketil Hylland ,&nbsp;Katrine Borgå ,&nbsp;Odd André Karlsen ,&nbsp;Anders Goksøyr","doi":"10.1016/j.margen.2022.100981","DOIUrl":null,"url":null,"abstract":"<div><p>Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species <em>Calanus finmarchicus, Calanus glacialis</em> and <em>Calanus hyperboreus</em> represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[<em>a</em>]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 μM) and BaP (0.1 μM). In <em>C. finmarchicus</em> and <em>C. glacialis</em>, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3′-phosphoadenosine 5′-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in <em>C. finmarchicus</em> and <em>C. glacialis</em> but were not affected in <em>C. hyperboreus</em>. However, a larger number of genes and pathways were modulated in <em>C. hyperboreus</em> by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in <em>C. finmarchicus</em> and <em>C. glacialis</em>. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1874778722000599/pdfft?md5=5318cd15fd32225027dedd984991b635&pid=1-s2.0-S1874778722000599-main.pdf","citationCount":"3","resultStr":"{\"title\":\"Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene\",\"authors\":\"Fekadu Yadetie ,&nbsp;Nadja R. Brun ,&nbsp;Julia Giebichenstein ,&nbsp;Katarzyna Dmoch ,&nbsp;Ketil Hylland ,&nbsp;Katrine Borgå ,&nbsp;Odd André Karlsen ,&nbsp;Anders Goksøyr\",\"doi\":\"10.1016/j.margen.2022.100981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species <em>Calanus finmarchicus, Calanus glacialis</em> and <em>Calanus hyperboreus</em> represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[<em>a</em>]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 μM) and BaP (0.1 μM). In <em>C. finmarchicus</em> and <em>C. glacialis</em>, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3′-phosphoadenosine 5′-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in <em>C. finmarchicus</em> and <em>C. glacialis</em> but were not affected in <em>C. hyperboreus</em>. However, a larger number of genes and pathways were modulated in <em>C. hyperboreus</em> by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in <em>C. finmarchicus</em> and <em>C. glacialis</em>. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1874778722000599/pdfft?md5=5318cd15fd32225027dedd984991b635&pid=1-s2.0-S1874778722000599-main.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874778722000599\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778722000599","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

北极和亚北极的远洋生物可能暴露于近海石油相关活动的流出物和泄漏物中,因此了解它们对原油相关污染物(如多环芳烃)的反应是很重要的。桡足类物种Calanus finmarchicus、Calanus glacialis和Calanus hyperboreus是北极海洋食物网的关键环节。我们对三种分别暴露于代表低分子量和高分子量多环芳烃的菲(Phe)和苯并[a]芘(BaP)的物种进行了转录组分析。在暴露于Phe (0.1 μM)和BaP (0.1 μM) 72 h后,观察到涉及许多细胞途径的几个基因的差异表达。在C. finmarchicus和C. glacialis中,暴露导致编码外生生物转化酶的基因上调,特别是II期细胞质磺化系统,包括3 ' -磷酸腺苷5 ' -硫酸磷酸合成酶(PAPSS)和硫转移酶(SULTs)。磺化途径基因受BaP的诱导作用比苯丙氨酸更强,而在阔叶树中不受影响。然而,多环芳烃调控了更多的基因和途径,包括编码外源生物转化和脂质代谢酶的基因,表明该物种对多环芳烃的响应更强。结果表明,胞浆磺化是冰草和雪草中多环芳烃的主要II期结合途径。已知受影响的一些生物转化系统涉及内源性化合物(如外皮甾体)的代谢,这可能表明对桡足类物种的生理和发育过程有潜在的干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene

Transcriptome responses in copepods Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus exposed to phenanthrene and benzo[a]pyrene

Arctic and sub-arctic pelagic organisms can be exposed to effluents and spills from offshore petroleum-related activities and thus it is important to understand how they respond to crude oil related contaminants such as polycyclic aromatic hydrocarbons (PAHs). The copepod species Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus represent key links in the arctic marine food web. We performed a transcriptome analysis of the three species exposed to phenanthrene (Phe) and benzo[a]pyrene (BaP) representing low and high molecular weight PAHs, respectively. Differential expression of several genes involved in many cellular pathways was observed after 72 h exposure to Phe (0.1 μM) and BaP (0.1 μM). In C. finmarchicus and C. glacialis, the exposure resulted in up-regulation of genes encoding enzymes in xenobiotic biotransformation, particularly the phase II cytosolic sulfonation system that include 3′-phosphoadenosine 5′-phosphosulfate synthase (PAPSS) and sulfotransferases (SULTs). The sulfonation pathway genes were more strongly induced by BaP than Phe in C. finmarchicus and C. glacialis but were not affected in C. hyperboreus. However, a larger number of genes and pathways were modulated in C. hyperboreus by the PAHs including genes encoding xenobiotic biotransformation and lipid metabolism enzymes, suggesting stronger responses in this species. The results suggest that the cytosolic sulfonation is a major phase II conjugation pathway for PAHs in C. finmarchicus and C. glacialis. Some of the biotransformation systems affected are known to be involved in metabolism of endogenous compounds such as ecdysteroids, which may suggest potential interference with physiological and developmental processes of the copepod species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信