Douglas R M Azevedo, Marcos O Prates, Dipankar Bandyopadhyay
{"title":"缓解虚弱模型中的空间混淆。","authors":"Douglas R M Azevedo, Marcos O Prates, Dipankar Bandyopadhyay","doi":"10.1093/biostatistics/kxac028","DOIUrl":null,"url":null,"abstract":"<p><p>The confounding between fixed effects and (spatial) random effects in a regression setup is termed spatial confounding. This topic continues to gain attention and has been studied extensively in recent years, given that failure to account for this may lead to a suboptimal inference. To mitigate this, a variety of projection-based approaches under the class of restricted spatial models are available in the context of generalized linear mixed models. However, these projection approaches cannot be directly extended to the spatial survival context via frailty models due to dimension incompatibility between the fixed and spatial random effects. In this work, we introduce a two-step approach to handle this, which involves (i) projecting the design matrix to the dimension of the spatial effect (via dimension reduction) and (ii) assuring that the random effect is orthogonal to this new design matrix (confounding alleviation). Under a fully Bayesian paradigm, we conduct fast estimation and inference using integrated nested Laplace approximation. Both simulation studies and application to a motivating data evaluating respiratory cancer survival in the US state of California reveal the advantages of our proposal in terms of model performance and confounding alleviation, compared to alternatives.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004977/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alleviating spatial confounding in frailty models.\",\"authors\":\"Douglas R M Azevedo, Marcos O Prates, Dipankar Bandyopadhyay\",\"doi\":\"10.1093/biostatistics/kxac028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The confounding between fixed effects and (spatial) random effects in a regression setup is termed spatial confounding. This topic continues to gain attention and has been studied extensively in recent years, given that failure to account for this may lead to a suboptimal inference. To mitigate this, a variety of projection-based approaches under the class of restricted spatial models are available in the context of generalized linear mixed models. However, these projection approaches cannot be directly extended to the spatial survival context via frailty models due to dimension incompatibility between the fixed and spatial random effects. In this work, we introduce a two-step approach to handle this, which involves (i) projecting the design matrix to the dimension of the spatial effect (via dimension reduction) and (ii) assuring that the random effect is orthogonal to this new design matrix (confounding alleviation). Under a fully Bayesian paradigm, we conduct fast estimation and inference using integrated nested Laplace approximation. Both simulation studies and application to a motivating data evaluating respiratory cancer survival in the US state of California reveal the advantages of our proposal in terms of model performance and confounding alleviation, compared to alternatives.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11004977/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac028\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Alleviating spatial confounding in frailty models.
The confounding between fixed effects and (spatial) random effects in a regression setup is termed spatial confounding. This topic continues to gain attention and has been studied extensively in recent years, given that failure to account for this may lead to a suboptimal inference. To mitigate this, a variety of projection-based approaches under the class of restricted spatial models are available in the context of generalized linear mixed models. However, these projection approaches cannot be directly extended to the spatial survival context via frailty models due to dimension incompatibility between the fixed and spatial random effects. In this work, we introduce a two-step approach to handle this, which involves (i) projecting the design matrix to the dimension of the spatial effect (via dimension reduction) and (ii) assuring that the random effect is orthogonal to this new design matrix (confounding alleviation). Under a fully Bayesian paradigm, we conduct fast estimation and inference using integrated nested Laplace approximation. Both simulation studies and application to a motivating data evaluating respiratory cancer survival in the US state of California reveal the advantages of our proposal in terms of model performance and confounding alleviation, compared to alternatives.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.