3-吲哚乙腈减弱鲍曼不动杆菌生物膜的形成并增强对亚胺培南的敏感性。

IF 2.7 4区 医学 Q3 IMMUNOLOGY
Shruti Kashyap, Harsimran Sidhu, Prince Sharma, Neena Capalash
{"title":"3-吲哚乙腈减弱鲍曼不动杆菌生物膜的形成并增强对亚胺培南的敏感性。","authors":"Shruti Kashyap,&nbsp;Harsimran Sidhu,&nbsp;Prince Sharma,&nbsp;Neena Capalash","doi":"10.1093/femspd/ftac029","DOIUrl":null,"url":null,"abstract":"<p><p>Acinetobacter baumannii poses a global danger due to its ability to resist most of the currently available antimicrobial agents. Furthermore, the rise of carbapenem-resistant A. baumannii isolates has limited the treatment options available. In the present study, plant auxin 3-indoleacetonitrile (3IAN) was found to inhibit biofilm formation and motility of A. baumannii at sublethal concentration. Mechanistically, 3IAN inhibited the synthesis of the quorum sensing signal 3-OH-C12-HSL by downregulating the expression of the abaI autoinducer synthase gene. 3IAN was found to reduce the minimum inhibitory concentration of A. baumannii ATCC 17978 against imipenem, ofloxacin, ciprofloxacin, tobramycin, and levofloxacin, and significantly decreased persistence against imipenem. Inhibition of efflux pumps by downregulating genes expression may be responsible for enhanced sensitivity and low persistence. 3IAN reduced the resistance to imipenem in carbapenem-resistant A. baumannii isolates by downregulating the expression of OXA β-lactamases (blaoxa-51 and blaoxa-23), outer membrane protein carO, and transporter protein adeB. These findings demonstrate the therapeutic potential of 3IAN, which could be explored as an adjuvant with antibiotics for controlling A. baumannii infections.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3-indoleacetonitrile attenuates biofilm formation and enhances sensitivity to imipenem in Acinetobacter baumannii.\",\"authors\":\"Shruti Kashyap,&nbsp;Harsimran Sidhu,&nbsp;Prince Sharma,&nbsp;Neena Capalash\",\"doi\":\"10.1093/femspd/ftac029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acinetobacter baumannii poses a global danger due to its ability to resist most of the currently available antimicrobial agents. Furthermore, the rise of carbapenem-resistant A. baumannii isolates has limited the treatment options available. In the present study, plant auxin 3-indoleacetonitrile (3IAN) was found to inhibit biofilm formation and motility of A. baumannii at sublethal concentration. Mechanistically, 3IAN inhibited the synthesis of the quorum sensing signal 3-OH-C12-HSL by downregulating the expression of the abaI autoinducer synthase gene. 3IAN was found to reduce the minimum inhibitory concentration of A. baumannii ATCC 17978 against imipenem, ofloxacin, ciprofloxacin, tobramycin, and levofloxacin, and significantly decreased persistence against imipenem. Inhibition of efflux pumps by downregulating genes expression may be responsible for enhanced sensitivity and low persistence. 3IAN reduced the resistance to imipenem in carbapenem-resistant A. baumannii isolates by downregulating the expression of OXA β-lactamases (blaoxa-51 and blaoxa-23), outer membrane protein carO, and transporter protein adeB. These findings demonstrate the therapeutic potential of 3IAN, which could be explored as an adjuvant with antibiotics for controlling A. baumannii infections.</p>\",\"PeriodicalId\":19795,\"journal\":{\"name\":\"Pathogens and disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens and disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/femspd/ftac029\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftac029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

鲍曼不动杆菌对目前大多数可用的抗菌剂具有耐药性,对全球构成威胁。此外,耐碳青霉烯鲍曼不动杆菌分离株的增加限制了可用的治疗选择。本研究发现,植物生长素3-吲哚乙腈(3IAN)在亚致死浓度下对鲍曼不动杆菌的生物膜形成和运动具有抑制作用。机制上,3IAN通过下调abaI自诱导剂合酶基因的表达抑制群体感应信号3-OH-C12-HSL的合成。3IAN可降低鲍曼不动杆菌ATCC 17978对亚胺培南、氧氟沙星、环丙沙星、妥布霉素和左氧氟沙星的最低抑菌浓度,并显著降低对亚胺培南的持久性。通过下调基因表达抑制外排泵可能导致敏感性增强和持久性降低。3IAN通过下调OXA β-内酰胺酶(blaoxa-51和blaoxa-23)、外膜蛋白carO和转运蛋白adeB的表达,降低了耐碳青霉烯类鲍曼不动杆菌对亚胺培南的耐药性。这些发现证明了3IAN的治疗潜力,它可以作为抗生素的佐剂来控制鲍曼不动杆菌感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-indoleacetonitrile attenuates biofilm formation and enhances sensitivity to imipenem in Acinetobacter baumannii.

Acinetobacter baumannii poses a global danger due to its ability to resist most of the currently available antimicrobial agents. Furthermore, the rise of carbapenem-resistant A. baumannii isolates has limited the treatment options available. In the present study, plant auxin 3-indoleacetonitrile (3IAN) was found to inhibit biofilm formation and motility of A. baumannii at sublethal concentration. Mechanistically, 3IAN inhibited the synthesis of the quorum sensing signal 3-OH-C12-HSL by downregulating the expression of the abaI autoinducer synthase gene. 3IAN was found to reduce the minimum inhibitory concentration of A. baumannii ATCC 17978 against imipenem, ofloxacin, ciprofloxacin, tobramycin, and levofloxacin, and significantly decreased persistence against imipenem. Inhibition of efflux pumps by downregulating genes expression may be responsible for enhanced sensitivity and low persistence. 3IAN reduced the resistance to imipenem in carbapenem-resistant A. baumannii isolates by downregulating the expression of OXA β-lactamases (blaoxa-51 and blaoxa-23), outer membrane protein carO, and transporter protein adeB. These findings demonstrate the therapeutic potential of 3IAN, which could be explored as an adjuvant with antibiotics for controlling A. baumannii infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pathogens and disease
Pathogens and disease IMMUNOLOGY-INFECTIOUS DISEASES
CiteScore
7.40
自引率
3.00%
发文量
44
期刊介绍: Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信