{"title":"LncRNA H19的缺乏可通过Akt/eNOS通路保护糖尿病肾病患者肾小球内皮细胞的结构损伤。","authors":"Xu Liu, Ming-Hui Li, Yun-Yun Zhao, Yu-Liang Xie, Xin Yu, Yu-Jing Chen, Peng Li, Wei-Fang Zhang, Tian-Tian Zhu","doi":"10.1080/13813455.2022.2102655","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> This study aimed to investigate the functions of lncRNA H19 on glomerular endothelial structural damage of diabetic nephropathy (DN).<b>Materials and Methods:</b> Rats were fed a high sugar and fat high feed die, and intraperitoneally administrated with streptozotocin (30 mg/kg) to induce DN model. Meanwile, rat glomerular endothelial cells (rGEnCs) were treated with high a level of glucose (HG, 30 mM glucose)to induce structural damage.<b>Results:</b> Our results showed that H19 level was drastically increased in diabetic glomeruli and high-glucose (HG)-stimulated rat glomerular endothelial cells (rGEnCs). Deficiency of H19 ameliorated microalbumin, creatinine, BUN, and histopathological alterations in diabetic rats. In addition, H19 deficiency significantly attenuated the damage of endothelial structure by upregulating the expression of junction proteins ZO-1 and Occludin, glycolcalyx protein Syndecan-1, and endothelial activation marker sVCAM-1 and sICAM-1 in diabetic rats. The <i>in vitro</i> results also showed that H19-siRNA alleviated glycocalyx shedding, tight junctions damage, and endothelial activation in HG-stimulated rGEnCs. Moreover, H19 deficiency significantly enhanced the expression of p-Akt and p-eNOS and NO concentration <i>in vitro</i> and <i>in vivo</i>. Pre-treatment with Akt inhibitor LY294002 abrogated these favourable effects mediated by H19 deficiency.<b>Discussion and Conclusion:</b> These results indicate that H19 deficiency could mitigate the structural damage of glomerular endothelium in DN via activating Akt/eNOS pathway.</p>","PeriodicalId":8331,"journal":{"name":"Archives of Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA H19 deficiency protects against the structural damage of glomerular endothelium in diabetic nephropathy via Akt/eNOS pathway.\",\"authors\":\"Xu Liu, Ming-Hui Li, Yun-Yun Zhao, Yu-Liang Xie, Xin Yu, Yu-Jing Chen, Peng Li, Wei-Fang Zhang, Tian-Tian Zhu\",\"doi\":\"10.1080/13813455.2022.2102655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> This study aimed to investigate the functions of lncRNA H19 on glomerular endothelial structural damage of diabetic nephropathy (DN).<b>Materials and Methods:</b> Rats were fed a high sugar and fat high feed die, and intraperitoneally administrated with streptozotocin (30 mg/kg) to induce DN model. Meanwile, rat glomerular endothelial cells (rGEnCs) were treated with high a level of glucose (HG, 30 mM glucose)to induce structural damage.<b>Results:</b> Our results showed that H19 level was drastically increased in diabetic glomeruli and high-glucose (HG)-stimulated rat glomerular endothelial cells (rGEnCs). Deficiency of H19 ameliorated microalbumin, creatinine, BUN, and histopathological alterations in diabetic rats. In addition, H19 deficiency significantly attenuated the damage of endothelial structure by upregulating the expression of junction proteins ZO-1 and Occludin, glycolcalyx protein Syndecan-1, and endothelial activation marker sVCAM-1 and sICAM-1 in diabetic rats. The <i>in vitro</i> results also showed that H19-siRNA alleviated glycocalyx shedding, tight junctions damage, and endothelial activation in HG-stimulated rGEnCs. Moreover, H19 deficiency significantly enhanced the expression of p-Akt and p-eNOS and NO concentration <i>in vitro</i> and <i>in vivo</i>. Pre-treatment with Akt inhibitor LY294002 abrogated these favourable effects mediated by H19 deficiency.<b>Discussion and Conclusion:</b> These results indicate that H19 deficiency could mitigate the structural damage of glomerular endothelium in DN via activating Akt/eNOS pathway.</p>\",\"PeriodicalId\":8331,\"journal\":{\"name\":\"Archives of Physiology and Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Physiology and Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13813455.2022.2102655\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Physiology and Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13813455.2022.2102655","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
LncRNA H19 deficiency protects against the structural damage of glomerular endothelium in diabetic nephropathy via Akt/eNOS pathway.
Objective: This study aimed to investigate the functions of lncRNA H19 on glomerular endothelial structural damage of diabetic nephropathy (DN).Materials and Methods: Rats were fed a high sugar and fat high feed die, and intraperitoneally administrated with streptozotocin (30 mg/kg) to induce DN model. Meanwile, rat glomerular endothelial cells (rGEnCs) were treated with high a level of glucose (HG, 30 mM glucose)to induce structural damage.Results: Our results showed that H19 level was drastically increased in diabetic glomeruli and high-glucose (HG)-stimulated rat glomerular endothelial cells (rGEnCs). Deficiency of H19 ameliorated microalbumin, creatinine, BUN, and histopathological alterations in diabetic rats. In addition, H19 deficiency significantly attenuated the damage of endothelial structure by upregulating the expression of junction proteins ZO-1 and Occludin, glycolcalyx protein Syndecan-1, and endothelial activation marker sVCAM-1 and sICAM-1 in diabetic rats. The in vitro results also showed that H19-siRNA alleviated glycocalyx shedding, tight junctions damage, and endothelial activation in HG-stimulated rGEnCs. Moreover, H19 deficiency significantly enhanced the expression of p-Akt and p-eNOS and NO concentration in vitro and in vivo. Pre-treatment with Akt inhibitor LY294002 abrogated these favourable effects mediated by H19 deficiency.Discussion and Conclusion: These results indicate that H19 deficiency could mitigate the structural damage of glomerular endothelium in DN via activating Akt/eNOS pathway.
期刊介绍:
Archives of Physiology and Biochemistry: The Journal of Metabolic Diseases is an international peer-reviewed journal which has been relaunched to meet the increasing demand for integrated publication on molecular, biochemical and cellular aspects of metabolic diseases, as well as clinical and therapeutic strategies for their treatment. It publishes full-length original articles, rapid papers, reviews and mini-reviews on selected topics. It is the overall goal of the journal to disseminate novel approaches to an improved understanding of major metabolic disorders.
The scope encompasses all topics related to the molecular and cellular pathophysiology of metabolic diseases like obesity, type 2 diabetes and the metabolic syndrome, and their associated complications.
Clinical studies are considered as an integral part of the Journal and should be related to one of the following topics:
-Dysregulation of hormone receptors and signal transduction
-Contribution of gene variants and gene regulatory processes
-Impairment of intermediary metabolism at the cellular level
-Secretion and metabolism of peptides and other factors that mediate cellular crosstalk
-Therapeutic strategies for managing metabolic diseases
Special issues dedicated to topics in the field will be published regularly.