JUNE的贝叶斯仿真与历史匹配。

I Vernon, J Owen, J Aylett-Bullock, C Cuesta-Lazaro, J Frawley, A Quera-Bofarull, A Sedgewick, D Shi, H Truong, M Turner, J Walker, T Caulfield, K Fong, F Krauss
{"title":"JUNE的贝叶斯仿真与历史匹配。","authors":"I Vernon,&nbsp;J Owen,&nbsp;J Aylett-Bullock,&nbsp;C Cuesta-Lazaro,&nbsp;J Frawley,&nbsp;A Quera-Bofarull,&nbsp;A Sedgewick,&nbsp;D Shi,&nbsp;H Truong,&nbsp;M Turner,&nbsp;J Walker,&nbsp;T Caulfield,&nbsp;K Fong,&nbsp;F Krauss","doi":"10.1098/rsta.2022.0039","DOIUrl":null,"url":null,"abstract":"<p><p>We analyze JUNE: a detailed model of COVID-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the uncertainty quantification approaches of Bayes linear emulation and history matching to mimic JUNE and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20220039"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376712/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian emulation and history matching of JUNE.\",\"authors\":\"I Vernon,&nbsp;J Owen,&nbsp;J Aylett-Bullock,&nbsp;C Cuesta-Lazaro,&nbsp;J Frawley,&nbsp;A Quera-Bofarull,&nbsp;A Sedgewick,&nbsp;D Shi,&nbsp;H Truong,&nbsp;M Turner,&nbsp;J Walker,&nbsp;T Caulfield,&nbsp;K Fong,&nbsp;F Krauss\",\"doi\":\"10.1098/rsta.2022.0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We analyze JUNE: a detailed model of COVID-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the uncertainty quantification approaches of Bayes linear emulation and history matching to mimic JUNE and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.</p>\",\"PeriodicalId\":286094,\"journal\":{\"name\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"volume\":\" \",\"pages\":\"20220039\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376712/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2022.0039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2022.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为RAMP倡议的一部分,我们分析了JUNE:一个具有高空间和人口分辨率的COVID-19传播详细模型。JUNE需要大量的计算资源进行评估,使得模型校准和一般不确定性分析极具挑战性。我们描述并采用贝叶斯线性仿真和历史匹配的不确定性量化方法来模拟JUNE,并执行全局参数搜索,从而确定参数空间的区域,产生可接受的匹配观测数据,并展示了这些方法的能力。这篇文章是主题“模拟现实生活中的流行病的技术挑战和克服这些挑战的例子”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bayesian emulation and history matching of JUNE.

Bayesian emulation and history matching of JUNE.

Bayesian emulation and history matching of JUNE.

Bayesian emulation and history matching of JUNE.

We analyze JUNE: a detailed model of COVID-19 transmission with high spatial and demographic resolution, developed as part of the RAMP initiative. JUNE requires substantial computational resources to evaluate, making model calibration and general uncertainty analysis extremely challenging. We describe and employ the uncertainty quantification approaches of Bayes linear emulation and history matching to mimic JUNE and to perform a global parameter search, hence identifying regions of parameter space that produce acceptable matches to observed data, and demonstrating the capability of such methods. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信