Fan Li, Xinyuan Chen, Zizhong Tian, Denise Esserman, Patrick J Heagerty, Rui Wang
{"title":"设计三级整群随机试验来评估治疗效果的异质性。","authors":"Fan Li, Xinyuan Chen, Zizhong Tian, Denise Esserman, Patrick J Heagerty, Rui Wang","doi":"10.1093/biostatistics/kxac026","DOIUrl":null,"url":null,"abstract":"<p><p>Cluster randomized trials often exhibit a three-level structure with participants nested in subclusters such as health care providers, and subclusters nested in clusters such as clinics. While the average treatment effect has been the primary focus in planning three-level randomized trials, interest is growing in understanding whether the treatment effect varies among prespecified patient subpopulations, such as those defined by demographics or baseline clinical characteristics. In this article, we derive novel analytical design formulas based on the asymptotic covariance matrix for powering confirmatory analyses of treatment effect heterogeneity in three-level trials, that are broadly applicable to the evaluation of cluster-level, subcluster-level, and participant-level effect modifiers and to designs where randomization can be carried out at any level. We characterize a nested exchangeable correlation structure for both the effect modifier and the outcome conditional on the effect modifier, and generate new insights from a study design perspective for conducting analyses of treatment effect heterogeneity based on a linear mixed analysis of covariance model. A simulation study is conducted to validate our new methods and two real-world trial examples are used for illustrations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583727/pdf/","citationCount":"9","resultStr":"{\"title\":\"Designing three-level cluster randomized trials to assess treatment effect heterogeneity.\",\"authors\":\"Fan Li, Xinyuan Chen, Zizhong Tian, Denise Esserman, Patrick J Heagerty, Rui Wang\",\"doi\":\"10.1093/biostatistics/kxac026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cluster randomized trials often exhibit a three-level structure with participants nested in subclusters such as health care providers, and subclusters nested in clusters such as clinics. While the average treatment effect has been the primary focus in planning three-level randomized trials, interest is growing in understanding whether the treatment effect varies among prespecified patient subpopulations, such as those defined by demographics or baseline clinical characteristics. In this article, we derive novel analytical design formulas based on the asymptotic covariance matrix for powering confirmatory analyses of treatment effect heterogeneity in three-level trials, that are broadly applicable to the evaluation of cluster-level, subcluster-level, and participant-level effect modifiers and to designs where randomization can be carried out at any level. We characterize a nested exchangeable correlation structure for both the effect modifier and the outcome conditional on the effect modifier, and generate new insights from a study design perspective for conducting analyses of treatment effect heterogeneity based on a linear mixed analysis of covariance model. A simulation study is conducted to validate our new methods and two real-world trial examples are used for illustrations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583727/pdf/\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing three-level cluster randomized trials to assess treatment effect heterogeneity.
Cluster randomized trials often exhibit a three-level structure with participants nested in subclusters such as health care providers, and subclusters nested in clusters such as clinics. While the average treatment effect has been the primary focus in planning three-level randomized trials, interest is growing in understanding whether the treatment effect varies among prespecified patient subpopulations, such as those defined by demographics or baseline clinical characteristics. In this article, we derive novel analytical design formulas based on the asymptotic covariance matrix for powering confirmatory analyses of treatment effect heterogeneity in three-level trials, that are broadly applicable to the evaluation of cluster-level, subcluster-level, and participant-level effect modifiers and to designs where randomization can be carried out at any level. We characterize a nested exchangeable correlation structure for both the effect modifier and the outcome conditional on the effect modifier, and generate new insights from a study design perspective for conducting analyses of treatment effect heterogeneity based on a linear mixed analysis of covariance model. A simulation study is conducted to validate our new methods and two real-world trial examples are used for illustrations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.