抑制酸中毒 pH 值促进 COVID-19 感染的纳米解毒剂。

View (Beijing, China) Pub Date : 2022-07-01 Epub Date: 2022-05-01 DOI:10.1002/VIW.20220004
Qidong Liu, Huitong Ruan, Zhihao Sheng, Xiaoru Sun, Siguang Li, Wenguo Cui, Cheng Li
{"title":"抑制酸中毒 pH 值促进 COVID-19 感染的纳米解毒剂。","authors":"Qidong Liu, Huitong Ruan, Zhihao Sheng, Xiaoru Sun, Siguang Li, Wenguo Cui, Cheng Li","doi":"10.1002/VIW.20220004","DOIUrl":null,"url":null,"abstract":"<p><p>Acidosis, such as respiratory acidosis and metabolic acidosis, can be induced by coronavirus disease 2019 (COVID-19) infection and is associated with increased mortality in critically ill COVID-19 patients. It remains unclear whether acidosis further promotes SARS-CoV-2 infection in patients, making virus removal difficult. For antacid therapy, sodium bicarbonate poses great risks caused by sodium overload, bicarbonate side effects, and hypocalcemia. Therefore, new antacid antidote is urgently needed. Our study showed that an acidosis-related pH of 6.8 increases SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression on the cell membrane by regulating intracellular microfilament polymerization, promoting SARS-CoV-2 pseudovirus infection. Based on this, we synthesized polyglutamic acid-PEG materials, used complexation of calcium ions and carboxyl groups to form the core, and adopted biomineralization methods to form a calcium carbonate nanoparticles (CaCO<sub>3</sub>-NPs) nanoantidote to neutralize excess hydrogen ions (H<sup>+</sup>), and restored the pH from 6.8 to approximately 7.4 (normal blood pH). CaCO<sub>3</sub>-NPs effectively prevented the heightened SARS-CoV-2 infection efficiency due to pH 6.8. Our study reveals that acidosis-related pH promotes SARS-CoV-2 infection, which suggests the existence of a positive feedback loop in which SARS-CoV-2 infection-induced acidosis enhances SARS-CoV-2 infection. Therefore, antacid therapy for acidosis COVID-19 patients is necessary. CaCO<sub>3</sub>-NPs may become an effective antacid nanoantidote superior to sodium bicarbonate.</p>","PeriodicalId":75305,"journal":{"name":"View (Beijing, China)","volume":" ","pages":"20220004"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347551/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoantidote for repression of acidosis pH promoting COVID-19 infection.\",\"authors\":\"Qidong Liu, Huitong Ruan, Zhihao Sheng, Xiaoru Sun, Siguang Li, Wenguo Cui, Cheng Li\",\"doi\":\"10.1002/VIW.20220004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acidosis, such as respiratory acidosis and metabolic acidosis, can be induced by coronavirus disease 2019 (COVID-19) infection and is associated with increased mortality in critically ill COVID-19 patients. It remains unclear whether acidosis further promotes SARS-CoV-2 infection in patients, making virus removal difficult. For antacid therapy, sodium bicarbonate poses great risks caused by sodium overload, bicarbonate side effects, and hypocalcemia. Therefore, new antacid antidote is urgently needed. Our study showed that an acidosis-related pH of 6.8 increases SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression on the cell membrane by regulating intracellular microfilament polymerization, promoting SARS-CoV-2 pseudovirus infection. Based on this, we synthesized polyglutamic acid-PEG materials, used complexation of calcium ions and carboxyl groups to form the core, and adopted biomineralization methods to form a calcium carbonate nanoparticles (CaCO<sub>3</sub>-NPs) nanoantidote to neutralize excess hydrogen ions (H<sup>+</sup>), and restored the pH from 6.8 to approximately 7.4 (normal blood pH). CaCO<sub>3</sub>-NPs effectively prevented the heightened SARS-CoV-2 infection efficiency due to pH 6.8. Our study reveals that acidosis-related pH promotes SARS-CoV-2 infection, which suggests the existence of a positive feedback loop in which SARS-CoV-2 infection-induced acidosis enhances SARS-CoV-2 infection. Therefore, antacid therapy for acidosis COVID-19 patients is necessary. CaCO<sub>3</sub>-NPs may become an effective antacid nanoantidote superior to sodium bicarbonate.</p>\",\"PeriodicalId\":75305,\"journal\":{\"name\":\"View (Beijing, China)\",\"volume\":\" \",\"pages\":\"20220004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347551/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"View (Beijing, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/VIW.20220004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"View (Beijing, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/VIW.20220004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冠状病毒病 2019(COVID-19)感染可诱发酸中毒,如呼吸性酸中毒和代谢性酸中毒,并与 COVID-19 重症患者的死亡率增加有关。目前仍不清楚酸中毒是否会进一步促进患者感染 SARS-CoV-2,从而使病毒难以清除。在抗酸治疗方面,碳酸氢钠因钠负荷过重、碳酸氢钠副作用和低钙血症而带来巨大风险。因此,迫切需要新的抗酸剂。我们的研究表明,与酸中毒相关的 pH 值为 6.8 时,SARS-CoV-2 受体血管紧张素转换酶 2(ACE2)在细胞膜上的表达会通过调节细胞内微丝聚合而增加,从而促进 SARS-CoV-2 伪病毒的感染。在此基础上,我们合成了聚谷氨酸-PEG材料,利用钙离子与羧基的络合形成核心,并采用生物矿化方法形成碳酸钙纳米颗粒(CaCO3-NPs)纳米解毒剂,中和过量的氢离子(H+),使pH值从6.8恢复到约7.4(正常血液pH值)。CaCO3-NPs 能有效防止因 pH 值为 6.8 而导致的 SARS-CoV-2 感染率升高。我们的研究揭示了与酸中毒相关的 pH 值会促进 SARS-CoV-2 感染,这表明存在一个正反馈循环,即 SARS-CoV-2 感染引起的酸中毒会增强 SARS-CoV-2 感染。因此,有必要对酸中毒 COVID-19 患者进行抗酸治疗。CaCO3-NPs 可能成为一种有效的抗酸中毒纳米解毒剂,其效果优于碳酸氢钠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanoantidote for repression of acidosis pH promoting COVID-19 infection.

Nanoantidote for repression of acidosis pH promoting COVID-19 infection.

Nanoantidote for repression of acidosis pH promoting COVID-19 infection.

Nanoantidote for repression of acidosis pH promoting COVID-19 infection.

Acidosis, such as respiratory acidosis and metabolic acidosis, can be induced by coronavirus disease 2019 (COVID-19) infection and is associated with increased mortality in critically ill COVID-19 patients. It remains unclear whether acidosis further promotes SARS-CoV-2 infection in patients, making virus removal difficult. For antacid therapy, sodium bicarbonate poses great risks caused by sodium overload, bicarbonate side effects, and hypocalcemia. Therefore, new antacid antidote is urgently needed. Our study showed that an acidosis-related pH of 6.8 increases SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) expression on the cell membrane by regulating intracellular microfilament polymerization, promoting SARS-CoV-2 pseudovirus infection. Based on this, we synthesized polyglutamic acid-PEG materials, used complexation of calcium ions and carboxyl groups to form the core, and adopted biomineralization methods to form a calcium carbonate nanoparticles (CaCO3-NPs) nanoantidote to neutralize excess hydrogen ions (H+), and restored the pH from 6.8 to approximately 7.4 (normal blood pH). CaCO3-NPs effectively prevented the heightened SARS-CoV-2 infection efficiency due to pH 6.8. Our study reveals that acidosis-related pH promotes SARS-CoV-2 infection, which suggests the existence of a positive feedback loop in which SARS-CoV-2 infection-induced acidosis enhances SARS-CoV-2 infection. Therefore, antacid therapy for acidosis COVID-19 patients is necessary. CaCO3-NPs may become an effective antacid nanoantidote superior to sodium bicarbonate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信