Emily Hensleigh, Andrew S Murtishaw, Michael D Treat, Chelcie F Heaney, Monica M Bolton, Jonathan J Sabbagh, Kirsten N Calvin, Jefferson W Kinney, Frank van Breukelen
{"title":"冬眠的金毛地松鼠(Spermophilus [Callospermophilus] lateralis)的冬眠不影响空间记忆。","authors":"Emily Hensleigh, Andrew S Murtishaw, Michael D Treat, Chelcie F Heaney, Monica M Bolton, Jonathan J Sabbagh, Kirsten N Calvin, Jefferson W Kinney, Frank van Breukelen","doi":"10.1086/721185","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractMammalian hibernation in ground squirrels is characterized by periods of torpor wherein body temperature approaches ambient temperature and metabolism is reduced to as low as 1/100th of active rates. It is unclear how hibernation affects long-term spatial memory, as tremendous remodeling of neurons is associated with torpor use. Given the suspected links between remodeling and memory formation and retention, we examined long-term spatial memory retention throughout a hibernation season. Animals were trained on a Barnes maze before entering torpor. Animals were tested for memory retention once a month throughout a hibernation season. Results indicate marked variation between individuals. Some squirrels retained memory across multiple torpor bouts, while other squirrels did not. No relationship was found between the number of torpor bouts, duration of bouts, or time spent torpid on long-term memory retention. However, that some squirrels successfully retain memory suggests that the profound remodeling of dendritic spines during torpor does not always lead to memory loss.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":" ","pages":"390-399"},"PeriodicalIF":1.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torpor Does Not Influence Spatial Memory in Hibernating Golden-Mantled Ground Squirrels (<i>Spermophilus [Callospermophilus] lateralis</i>).\",\"authors\":\"Emily Hensleigh, Andrew S Murtishaw, Michael D Treat, Chelcie F Heaney, Monica M Bolton, Jonathan J Sabbagh, Kirsten N Calvin, Jefferson W Kinney, Frank van Breukelen\",\"doi\":\"10.1086/721185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractMammalian hibernation in ground squirrels is characterized by periods of torpor wherein body temperature approaches ambient temperature and metabolism is reduced to as low as 1/100th of active rates. It is unclear how hibernation affects long-term spatial memory, as tremendous remodeling of neurons is associated with torpor use. Given the suspected links between remodeling and memory formation and retention, we examined long-term spatial memory retention throughout a hibernation season. Animals were trained on a Barnes maze before entering torpor. Animals were tested for memory retention once a month throughout a hibernation season. Results indicate marked variation between individuals. Some squirrels retained memory across multiple torpor bouts, while other squirrels did not. No relationship was found between the number of torpor bouts, duration of bouts, or time spent torpid on long-term memory retention. However, that some squirrels successfully retain memory suggests that the profound remodeling of dendritic spines during torpor does not always lead to memory loss.</p>\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\" \",\"pages\":\"390-399\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/721185\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/721185","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Torpor Does Not Influence Spatial Memory in Hibernating Golden-Mantled Ground Squirrels (Spermophilus [Callospermophilus] lateralis).
AbstractMammalian hibernation in ground squirrels is characterized by periods of torpor wherein body temperature approaches ambient temperature and metabolism is reduced to as low as 1/100th of active rates. It is unclear how hibernation affects long-term spatial memory, as tremendous remodeling of neurons is associated with torpor use. Given the suspected links between remodeling and memory formation and retention, we examined long-term spatial memory retention throughout a hibernation season. Animals were trained on a Barnes maze before entering torpor. Animals were tested for memory retention once a month throughout a hibernation season. Results indicate marked variation between individuals. Some squirrels retained memory across multiple torpor bouts, while other squirrels did not. No relationship was found between the number of torpor bouts, duration of bouts, or time spent torpid on long-term memory retention. However, that some squirrels successfully retain memory suggests that the profound remodeling of dendritic spines during torpor does not always lead to memory loss.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.