β-胡萝卜素和没食子酸通过提高枸杞抗氧化活性和调节离子吸收来改善盐胁迫效应。

IF 3.4 3区 生物学 Q1 Agricultural and Biological Sciences
Marziyeh Babaei, Leila Shabani, Shahla Hashemi-Shahraki
{"title":"β-胡萝卜素和没食子酸通过提高枸杞抗氧化活性和调节离子吸收来改善盐胁迫效应。","authors":"Marziyeh Babaei,&nbsp;Leila Shabani,&nbsp;Shahla Hashemi-Shahraki","doi":"10.1186/s40529-022-00352-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Plant growth and development are severely affected by soil salinity. This study was carried out to evaluate the interaction of foliar application of antioxidants (β-carotene and gallic acid) and salt stress on Lepidium sativum seedlings.</p><p><strong>Results: </strong>Our findings revealed that total dry and fresh weight were adversely affected by 25 mM NaCl salinity stress. Moreover, K<sup>+</sup> content decreased while Na<sup>+</sup> content increased significantly. The foliar application of β-carotene and gallic acid significantly mitigated the effects of salt stress by regulating ion uptake, reducing H<sub>2</sub>O<sub>2</sub> and malondialdehyde (MDA) content, as well as increasing enzymatic antioxidant activity, phenolic, glutathione, and chlorophyll content.</p><p><strong>Conclusions: </strong>β-carotene- and gallic acid-treated plants had higher salt tolerance.</p>","PeriodicalId":9185,"journal":{"name":"Botanical Studies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287502/pdf/","citationCount":"13","resultStr":"{\"title\":\"Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L.\",\"authors\":\"Marziyeh Babaei,&nbsp;Leila Shabani,&nbsp;Shahla Hashemi-Shahraki\",\"doi\":\"10.1186/s40529-022-00352-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Plant growth and development are severely affected by soil salinity. This study was carried out to evaluate the interaction of foliar application of antioxidants (β-carotene and gallic acid) and salt stress on Lepidium sativum seedlings.</p><p><strong>Results: </strong>Our findings revealed that total dry and fresh weight were adversely affected by 25 mM NaCl salinity stress. Moreover, K<sup>+</sup> content decreased while Na<sup>+</sup> content increased significantly. The foliar application of β-carotene and gallic acid significantly mitigated the effects of salt stress by regulating ion uptake, reducing H<sub>2</sub>O<sub>2</sub> and malondialdehyde (MDA) content, as well as increasing enzymatic antioxidant activity, phenolic, glutathione, and chlorophyll content.</p><p><strong>Conclusions: </strong>β-carotene- and gallic acid-treated plants had higher salt tolerance.</p>\",\"PeriodicalId\":9185,\"journal\":{\"name\":\"Botanical Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287502/pdf/\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Botanical Studies\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40529-022-00352-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanical Studies","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40529-022-00352-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 13

摘要

背景:土壤盐分严重影响植物的生长发育。研究了抗氧化剂(β-胡萝卜素和没食子酸)叶面施用与盐胁迫对枸杞幼苗的影响。结果:25 mM NaCl盐胁迫对水稻总干重和总鲜重均有不利影响。K+含量显著降低,Na+含量显著升高。叶面施用β-胡萝卜素和没食子酸可通过调节离子吸收、降低H2O2和丙二醛(MDA)含量、提高酶抗氧化活性、酚类物质、谷胱甘肽和叶绿素含量,显著缓解盐胁迫的影响。结论:β-胡萝卜素和没食子酸处理的植物具有较高的耐盐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L.

Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L.

Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L.

Improving the effects of salt stress by β-carotene and gallic acid using increasing antioxidant activity and regulating ion uptake in Lepidium sativum L.

Background: Plant growth and development are severely affected by soil salinity. This study was carried out to evaluate the interaction of foliar application of antioxidants (β-carotene and gallic acid) and salt stress on Lepidium sativum seedlings.

Results: Our findings revealed that total dry and fresh weight were adversely affected by 25 mM NaCl salinity stress. Moreover, K+ content decreased while Na+ content increased significantly. The foliar application of β-carotene and gallic acid significantly mitigated the effects of salt stress by regulating ion uptake, reducing H2O2 and malondialdehyde (MDA) content, as well as increasing enzymatic antioxidant activity, phenolic, glutathione, and chlorophyll content.

Conclusions: β-carotene- and gallic acid-treated plants had higher salt tolerance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Botanical Studies
Botanical Studies 生物-植物科学
CiteScore
5.50
自引率
2.90%
发文量
32
审稿时长
2.4 months
期刊介绍: Botanical Studies is an open access journal that encompasses all aspects of botany, including but not limited to taxonomy, morphology, development, genetics, evolution, reproduction, systematics, and biodiversity of all plant groups, algae, and fungi. The journal is affiliated with the Institute of Plant and Microbial Biology, Academia Sinica, Taiwan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信