生育酚增强亚砷酸钠处理大鼠胃肠道抗氧化防御系统和组织形态学参数。

Q4 Medicine
O O Oladokun, T C Olaleye, N M Moses, O A Oladosu, A A Babatunde, K I Adedokun, M W Owonikoko, K O Ajeigbe
{"title":"生育酚增强亚砷酸钠处理大鼠胃肠道抗氧化防御系统和组织形态学参数。","authors":"O O Oladokun,&nbsp;T C Olaleye,&nbsp;N M Moses,&nbsp;O A Oladosu,&nbsp;A A Babatunde,&nbsp;K I Adedokun,&nbsp;M W Owonikoko,&nbsp;K O Ajeigbe","doi":"10.54548/njps.v37i1.11","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic compromises the gastrointestinal integrity and function via the body's anti-oxidative system breakdown.  Hence, this study aimed to investigate the effects of tocopherol on redox imbalance and histoarchitectural alterations in rats' gastrointestinal tract exposed to sodium arsenite. Sodium arsenite and graded doses of tocopherol were administered orally into experimental rats assigned to different groups for four weeks concurrently. Redox status assay was done in homogenized samples by spectrophotometry. Parietal cell mass and mucous cell density (stomach), villus height and crypt depth (ileum), goblet cells count, and crypt depth (colon) were evaluated by histomorphometry. Inflammatory cells infiltration was also assessed using a semi-quantitative procedure. Sodium arsenite caused a significant increase in Malondialdehyde and Myeloperoxidase but, decreased Superoxide dismutase, Catalase, Nitric oxide, Glutathione peroxidase, Glutathione, and Glutathione-S-Transferase. Tocopherol treatment reversed the changes (p<0.05) though not largely dose-dependent. Furthermore, tocopherol annulled sodium arsenite-induced increase in parietal cell mass and decrease in mucous cell density in the stomach, decrease in villus height and villus height/crypt depth ratio in the ileum, and decrease in goblets cells and increase in crypt depth in the colon. Moreover, activated inflammatory cell infiltration by sodium arsenite was mitigated by tocopherol. Sodium arsenite provokes not only marked inflammatory cellular infiltration but a focal loss of glands, hyperplasia of crypts, atrophic villi, and hypertrophy of Peyer's patches in the intestines, which are all lessened with tocopherol treatment.  These findings underscore the anti-oxidative properties of tocopherol as a potent dietary factor against sodium arsenite toxicity in the gastrointestinal tract. Keywords: Tocopherol, arsenic, stomach, ileum, colon.</p>","PeriodicalId":35043,"journal":{"name":"Nigerian Journal of Physiological Sciences","volume":" ","pages":"83-92"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tocopherol Enhances the Antioxidant Defense System and Histomorphometric Parameters in The Gastrointestinal Tract of Rats Treated with Sodium Arsenite.\",\"authors\":\"O O Oladokun,&nbsp;T C Olaleye,&nbsp;N M Moses,&nbsp;O A Oladosu,&nbsp;A A Babatunde,&nbsp;K I Adedokun,&nbsp;M W Owonikoko,&nbsp;K O Ajeigbe\",\"doi\":\"10.54548/njps.v37i1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arsenic compromises the gastrointestinal integrity and function via the body's anti-oxidative system breakdown.  Hence, this study aimed to investigate the effects of tocopherol on redox imbalance and histoarchitectural alterations in rats' gastrointestinal tract exposed to sodium arsenite. Sodium arsenite and graded doses of tocopherol were administered orally into experimental rats assigned to different groups for four weeks concurrently. Redox status assay was done in homogenized samples by spectrophotometry. Parietal cell mass and mucous cell density (stomach), villus height and crypt depth (ileum), goblet cells count, and crypt depth (colon) were evaluated by histomorphometry. Inflammatory cells infiltration was also assessed using a semi-quantitative procedure. Sodium arsenite caused a significant increase in Malondialdehyde and Myeloperoxidase but, decreased Superoxide dismutase, Catalase, Nitric oxide, Glutathione peroxidase, Glutathione, and Glutathione-S-Transferase. Tocopherol treatment reversed the changes (p<0.05) though not largely dose-dependent. Furthermore, tocopherol annulled sodium arsenite-induced increase in parietal cell mass and decrease in mucous cell density in the stomach, decrease in villus height and villus height/crypt depth ratio in the ileum, and decrease in goblets cells and increase in crypt depth in the colon. Moreover, activated inflammatory cell infiltration by sodium arsenite was mitigated by tocopherol. Sodium arsenite provokes not only marked inflammatory cellular infiltration but a focal loss of glands, hyperplasia of crypts, atrophic villi, and hypertrophy of Peyer's patches in the intestines, which are all lessened with tocopherol treatment.  These findings underscore the anti-oxidative properties of tocopherol as a potent dietary factor against sodium arsenite toxicity in the gastrointestinal tract. Keywords: Tocopherol, arsenic, stomach, ileum, colon.</p>\",\"PeriodicalId\":35043,\"journal\":{\"name\":\"Nigerian Journal of Physiological Sciences\",\"volume\":\" \",\"pages\":\"83-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nigerian Journal of Physiological Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54548/njps.v37i1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Physiological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54548/njps.v37i1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

砷通过人体抗氧化系统的破坏损害胃肠道的完整性和功能。因此,本研究旨在探讨生育酚对亚砷酸钠暴露大鼠胃肠道氧化还原失衡和组织结构改变的影响。实验大鼠分为不同的组,同时口服亚砷酸钠和分级剂量的生育酚4周。用分光光度法测定匀浆后样品的氧化还原状态。用组织形态学法测定胃壁细胞质量和黏液细胞密度、回肠绒毛高度和隐窝深度、杯状细胞计数和隐窝深度。炎症细胞浸润也采用半定量方法进行评估。亚砷酸钠引起丙二醛和髓过氧化物酶显著升高,但导致超氧化物歧化酶、过氧化氢酶、一氧化氮、谷胱甘肽过氧化物酶、谷胱甘肽和谷胱甘肽- s转移酶显著降低。生育酚治疗逆转了这一变化(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tocopherol Enhances the Antioxidant Defense System and Histomorphometric Parameters in The Gastrointestinal Tract of Rats Treated with Sodium Arsenite.

Arsenic compromises the gastrointestinal integrity and function via the body's anti-oxidative system breakdown.  Hence, this study aimed to investigate the effects of tocopherol on redox imbalance and histoarchitectural alterations in rats' gastrointestinal tract exposed to sodium arsenite. Sodium arsenite and graded doses of tocopherol were administered orally into experimental rats assigned to different groups for four weeks concurrently. Redox status assay was done in homogenized samples by spectrophotometry. Parietal cell mass and mucous cell density (stomach), villus height and crypt depth (ileum), goblet cells count, and crypt depth (colon) were evaluated by histomorphometry. Inflammatory cells infiltration was also assessed using a semi-quantitative procedure. Sodium arsenite caused a significant increase in Malondialdehyde and Myeloperoxidase but, decreased Superoxide dismutase, Catalase, Nitric oxide, Glutathione peroxidase, Glutathione, and Glutathione-S-Transferase. Tocopherol treatment reversed the changes (p<0.05) though not largely dose-dependent. Furthermore, tocopherol annulled sodium arsenite-induced increase in parietal cell mass and decrease in mucous cell density in the stomach, decrease in villus height and villus height/crypt depth ratio in the ileum, and decrease in goblets cells and increase in crypt depth in the colon. Moreover, activated inflammatory cell infiltration by sodium arsenite was mitigated by tocopherol. Sodium arsenite provokes not only marked inflammatory cellular infiltration but a focal loss of glands, hyperplasia of crypts, atrophic villi, and hypertrophy of Peyer's patches in the intestines, which are all lessened with tocopherol treatment.  These findings underscore the anti-oxidative properties of tocopherol as a potent dietary factor against sodium arsenite toxicity in the gastrointestinal tract. Keywords: Tocopherol, arsenic, stomach, ileum, colon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nigerian Journal of Physiological Sciences
Nigerian Journal of Physiological Sciences Medicine-Physiology (medical)
CiteScore
0.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信