Catalin V Buhusi, Alexander R Matthews, Mona Buhusi
{"title":"mPFC儿茶酚胺通过食欲干扰物调节大鼠的注意力捕获,并在峰值间隔过程中调节对时间的注意力。","authors":"Catalin V Buhusi, Alexander R Matthews, Mona Buhusi","doi":"10.1037/bne0000528","DOIUrl":null,"url":null,"abstract":"<p><p>The behavioral and neural mechanisms by which distracters delay interval timing behavior are currently unclear. Distracters delay timing in a considerable dynamic range: Some distracters have no effect on timing (\"run\"), whereas others seem to \"stop\" timing; some distracters restart (\"reset\") the entire timing mechanisms at their offset, whereas others seem to capture attentional resources long after their termination (\"over-reset\"). While the run-reset range of delays is accounted for by the <i>Time-Sharing Hypothesis</i> (Buhusi, 2003, 2012), the behavioral and neural mechanisms of \"over-resetting\" are currently uncertain. We investigated the role of novelty (novel/familiar) and significance (consequential/inconsequential) in the time-delaying effect of distracters and the role of medial prefrontal cortex (mPFC) catecholamines by local infusion of norepinephrine-dopamine reuptake inhibitor (NDRI) nomifensine in a peak-interval (PI) procedure in rats. Results indicate differences in time delay between groups, suggesting a role for both novelty and significance: inconsequential, familiar distracters \"stopped\" timing, novel distracters \"reset\" timing, whereas appetitively conditioned distracters \"over-reset\" timing. mPFC infusion of nomifensine modulated attentional capture by appetitive distracters in a \"U\"-shaped fashion, reduced the delay after novel distracters, but had no effects after inconsequential, familiar distracters. These results were not due to nomifensine affecting either timing accuracy, precision, or peak response rate. Results may help elucidate the behavioral and physiological mechanisms underlying interval timing and attention to time and may contribute to developing new treatment strategies for disorders of attention. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"418-429"},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617693/pdf/nihms-1844867.pdf","citationCount":"1","resultStr":"{\"title\":\"mPFC catecholamines modulate attentional capture by appetitive distracters and attention to time in a peak-interval procedure in rats.\",\"authors\":\"Catalin V Buhusi, Alexander R Matthews, Mona Buhusi\",\"doi\":\"10.1037/bne0000528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The behavioral and neural mechanisms by which distracters delay interval timing behavior are currently unclear. Distracters delay timing in a considerable dynamic range: Some distracters have no effect on timing (\\\"run\\\"), whereas others seem to \\\"stop\\\" timing; some distracters restart (\\\"reset\\\") the entire timing mechanisms at their offset, whereas others seem to capture attentional resources long after their termination (\\\"over-reset\\\"). While the run-reset range of delays is accounted for by the <i>Time-Sharing Hypothesis</i> (Buhusi, 2003, 2012), the behavioral and neural mechanisms of \\\"over-resetting\\\" are currently uncertain. We investigated the role of novelty (novel/familiar) and significance (consequential/inconsequential) in the time-delaying effect of distracters and the role of medial prefrontal cortex (mPFC) catecholamines by local infusion of norepinephrine-dopamine reuptake inhibitor (NDRI) nomifensine in a peak-interval (PI) procedure in rats. Results indicate differences in time delay between groups, suggesting a role for both novelty and significance: inconsequential, familiar distracters \\\"stopped\\\" timing, novel distracters \\\"reset\\\" timing, whereas appetitively conditioned distracters \\\"over-reset\\\" timing. mPFC infusion of nomifensine modulated attentional capture by appetitive distracters in a \\\"U\\\"-shaped fashion, reduced the delay after novel distracters, but had no effects after inconsequential, familiar distracters. These results were not due to nomifensine affecting either timing accuracy, precision, or peak response rate. Results may help elucidate the behavioral and physiological mechanisms underlying interval timing and attention to time and may contribute to developing new treatment strategies for disorders of attention. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" \",\"pages\":\"418-429\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617693/pdf/nihms-1844867.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1037/bne0000528\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1037/bne0000528","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
mPFC catecholamines modulate attentional capture by appetitive distracters and attention to time in a peak-interval procedure in rats.
The behavioral and neural mechanisms by which distracters delay interval timing behavior are currently unclear. Distracters delay timing in a considerable dynamic range: Some distracters have no effect on timing ("run"), whereas others seem to "stop" timing; some distracters restart ("reset") the entire timing mechanisms at their offset, whereas others seem to capture attentional resources long after their termination ("over-reset"). While the run-reset range of delays is accounted for by the Time-Sharing Hypothesis (Buhusi, 2003, 2012), the behavioral and neural mechanisms of "over-resetting" are currently uncertain. We investigated the role of novelty (novel/familiar) and significance (consequential/inconsequential) in the time-delaying effect of distracters and the role of medial prefrontal cortex (mPFC) catecholamines by local infusion of norepinephrine-dopamine reuptake inhibitor (NDRI) nomifensine in a peak-interval (PI) procedure in rats. Results indicate differences in time delay between groups, suggesting a role for both novelty and significance: inconsequential, familiar distracters "stopped" timing, novel distracters "reset" timing, whereas appetitively conditioned distracters "over-reset" timing. mPFC infusion of nomifensine modulated attentional capture by appetitive distracters in a "U"-shaped fashion, reduced the delay after novel distracters, but had no effects after inconsequential, familiar distracters. These results were not due to nomifensine affecting either timing accuracy, precision, or peak response rate. Results may help elucidate the behavioral and physiological mechanisms underlying interval timing and attention to time and may contribute to developing new treatment strategies for disorders of attention. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.