从大肠杆菌到枯草芽孢杆菌,一次一个核糖核酸酶。

Pub Date : 2021-12-20 DOI:10.5802/crbiol.70
Ciarán Condon, Olivier Pellegrini, Laetitia Gilet, Sylvain Durand, Frédérique Braun
{"title":"从大肠杆菌到枯草芽孢杆菌,一次一个核糖核酸酶。","authors":"Ciarán Condon,&nbsp;Olivier Pellegrini,&nbsp;Laetitia Gilet,&nbsp;Sylvain Durand,&nbsp;Frédérique Braun","doi":"10.5802/crbiol.70","DOIUrl":null,"url":null,"abstract":"<p><p>Most bacterial ribonucleases (RNases) known to date have been identified in either Escherichia coli or Bacillus subtilis. These two organisms lie on opposite poles of the phylogenetic spectrum, separated by 1-3 billion years of evolution. As a result, the RNA maturation and degradation machineries of these two organisms have little overlap, with each having a distinct set of RNases in addition to a core set of enzymes that is highly conserved across the bacterial spectrum. In this paper, we describe what the functions performed by major RNases in these two bacteria, and how the evolutionary space between them can be described by two opposing gradients of enzymes that fade out and fade in, respectively, as one walks across the phylogenetic tree from E. coli to B. subtilis.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Walking from E. coli to B. subtilis, one ribonuclease at a time.\",\"authors\":\"Ciarán Condon,&nbsp;Olivier Pellegrini,&nbsp;Laetitia Gilet,&nbsp;Sylvain Durand,&nbsp;Frédérique Braun\",\"doi\":\"10.5802/crbiol.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most bacterial ribonucleases (RNases) known to date have been identified in either Escherichia coli or Bacillus subtilis. These two organisms lie on opposite poles of the phylogenetic spectrum, separated by 1-3 billion years of evolution. As a result, the RNA maturation and degradation machineries of these two organisms have little overlap, with each having a distinct set of RNases in addition to a core set of enzymes that is highly conserved across the bacterial spectrum. In this paper, we describe what the functions performed by major RNases in these two bacteria, and how the evolutionary space between them can be described by two opposing gradients of enzymes that fade out and fade in, respectively, as one walks across the phylogenetic tree from E. coli to B. subtilis.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5802/crbiol.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5802/crbiol.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

迄今为止已知的大多数细菌核糖核酸酶(RNases)都是在大肠杆菌或枯草芽孢杆菌中发现的。这两种生物位于系统发育谱的两极,相隔30亿年的进化。因此,这两种生物的RNA成熟和降解机制几乎没有重叠,除了一组在细菌光谱中高度保守的核心酶外,每种生物都有一组不同的RNA酶。在本文中,我们描述了这两种细菌中主要rna酶的功能,以及它们之间的进化空间如何通过两个相反的酶梯度来描述,分别从大肠杆菌到枯草芽孢杆菌走过系统发育树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Walking from E. coli to B. subtilis, one ribonuclease at a time.

Most bacterial ribonucleases (RNases) known to date have been identified in either Escherichia coli or Bacillus subtilis. These two organisms lie on opposite poles of the phylogenetic spectrum, separated by 1-3 billion years of evolution. As a result, the RNA maturation and degradation machineries of these two organisms have little overlap, with each having a distinct set of RNases in addition to a core set of enzymes that is highly conserved across the bacterial spectrum. In this paper, we describe what the functions performed by major RNases in these two bacteria, and how the evolutionary space between them can be described by two opposing gradients of enzymes that fade out and fade in, respectively, as one walks across the phylogenetic tree from E. coli to B. subtilis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信