{"title":"细胞衍生基质对人 Wharton's jelly 衍生间充质干细胞生长和分化的影响。","authors":"Sakthivel Selvaraj, Secunda Rupert, Sangeetha Kadapakkam Nandabalan, Charumathi Anbalagan, Prasanna Srinivasan Rajaram, Jeswanth Satyanesan, Rosy Vennila, Surendran Rajagopal","doi":"10.1159/000526153","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-derived matrices (CDMs) are scaffolds constructed by decellularization of cellular matrices from different tissues and organs. Since CDMs mimic the extracellular matrices (ECMs) of native tissues, it plays an essential role in the preparation of bioscaffolds. CDM scaffolds from mesenchymal stem cells (MSCs) have been reported to support cell adhesion and proliferation of its own cells. Therefore, in this study we aimed to test if growth of human Wharton's jelly-derived MSCs may be enhanced when cultured on their own CDMs. To do this, MSCs were induced to generate ECM using ascorbic acid. Thus, obtained matrices were decellularized and characterized quantitatively for changes in their biochemical components (total protein, collagen, glycosaminoglycans) and qualitatively for fibronectin, laminin, and collagen (I & IV) by immunostaining. Our results show the retention of essential ECM components in the decellularized WJ-MSC-derived matrix (WJ-CDM). The influence of WJ-CDM on proliferation and differentiation of WJ-MSCs were evaluated by comparing their growth on collagen and fibronectin-only coated plates. A non-coated tissue culture polystyrene plate (TCPS) served as control. Our cell proliferation results show that no significant changes were observed in the proliferation of MSCs when cultured on WJ-CDM as compared to the bio-coated and non-coated cultures. However, gene expression analysis of the differentiation process showed that osteogenic and adipogenic differentiation potential of the WJ-MSCs was significantly increased upon culturing them on WJ-CDM. In conclusion, the present study reveals that the WJ-MSCs cultured on WJ-CDM may augment osteogenic and adipogenic differentiation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Cell-Derived Matrices on Growth and Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells.\",\"authors\":\"Sakthivel Selvaraj, Secunda Rupert, Sangeetha Kadapakkam Nandabalan, Charumathi Anbalagan, Prasanna Srinivasan Rajaram, Jeswanth Satyanesan, Rosy Vennila, Surendran Rajagopal\",\"doi\":\"10.1159/000526153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-derived matrices (CDMs) are scaffolds constructed by decellularization of cellular matrices from different tissues and organs. Since CDMs mimic the extracellular matrices (ECMs) of native tissues, it plays an essential role in the preparation of bioscaffolds. CDM scaffolds from mesenchymal stem cells (MSCs) have been reported to support cell adhesion and proliferation of its own cells. Therefore, in this study we aimed to test if growth of human Wharton's jelly-derived MSCs may be enhanced when cultured on their own CDMs. To do this, MSCs were induced to generate ECM using ascorbic acid. Thus, obtained matrices were decellularized and characterized quantitatively for changes in their biochemical components (total protein, collagen, glycosaminoglycans) and qualitatively for fibronectin, laminin, and collagen (I & IV) by immunostaining. Our results show the retention of essential ECM components in the decellularized WJ-MSC-derived matrix (WJ-CDM). The influence of WJ-CDM on proliferation and differentiation of WJ-MSCs were evaluated by comparing their growth on collagen and fibronectin-only coated plates. A non-coated tissue culture polystyrene plate (TCPS) served as control. Our cell proliferation results show that no significant changes were observed in the proliferation of MSCs when cultured on WJ-CDM as compared to the bio-coated and non-coated cultures. However, gene expression analysis of the differentiation process showed that osteogenic and adipogenic differentiation potential of the WJ-MSCs was significantly increased upon culturing them on WJ-CDM. In conclusion, the present study reveals that the WJ-MSCs cultured on WJ-CDM may augment osteogenic and adipogenic differentiation.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000526153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000526153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effect of Cell-Derived Matrices on Growth and Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells.
Cell-derived matrices (CDMs) are scaffolds constructed by decellularization of cellular matrices from different tissues and organs. Since CDMs mimic the extracellular matrices (ECMs) of native tissues, it plays an essential role in the preparation of bioscaffolds. CDM scaffolds from mesenchymal stem cells (MSCs) have been reported to support cell adhesion and proliferation of its own cells. Therefore, in this study we aimed to test if growth of human Wharton's jelly-derived MSCs may be enhanced when cultured on their own CDMs. To do this, MSCs were induced to generate ECM using ascorbic acid. Thus, obtained matrices were decellularized and characterized quantitatively for changes in their biochemical components (total protein, collagen, glycosaminoglycans) and qualitatively for fibronectin, laminin, and collagen (I & IV) by immunostaining. Our results show the retention of essential ECM components in the decellularized WJ-MSC-derived matrix (WJ-CDM). The influence of WJ-CDM on proliferation and differentiation of WJ-MSCs were evaluated by comparing their growth on collagen and fibronectin-only coated plates. A non-coated tissue culture polystyrene plate (TCPS) served as control. Our cell proliferation results show that no significant changes were observed in the proliferation of MSCs when cultured on WJ-CDM as compared to the bio-coated and non-coated cultures. However, gene expression analysis of the differentiation process showed that osteogenic and adipogenic differentiation potential of the WJ-MSCs was significantly increased upon culturing them on WJ-CDM. In conclusion, the present study reveals that the WJ-MSCs cultured on WJ-CDM may augment osteogenic and adipogenic differentiation.