大鼠原代肝细胞代谢致癌吡咯利西啶生物碱和吡咯利西啶生物碱n -氧化物产生相同的DHP-DNA加合物。

IF 1.2 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Xiaobo He, Qingsu Xia, Qiang Shi, Peter P Fu
{"title":"大鼠原代肝细胞代谢致癌吡咯利西啶生物碱和吡咯利西啶生物碱n -氧化物产生相同的DHP-DNA加合物。","authors":"Xiaobo He,&nbsp;Qingsu Xia,&nbsp;Qiang Shi,&nbsp;Peter P Fu","doi":"10.1080/26896583.2021.1954460","DOIUrl":null,"url":null,"abstract":"<p><p>We recently established a genotoxic mechanism mediated by a set of (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5<i>H</i>-pyrrolizine (DHP)-DNA adducts, which lead to pyrrolizidine alkaloid (PA)-induced liver tumor initiation. This mechanism is involved in the metabolism of a series of carcinogenic PAs and PA <i>N</i>-oxides in rats <i>in vivo</i> and <i>in vitro</i>. There is a correlation between the order of liver tumor potency and the level of DHP-DNA adduct formation. Thus, these DHP-DNA adducts can be potential biomarkers of PA and PA <i>N</i>-oxide exposure and liver tumor initiation. To establish the generality of this mechanism, in the present study, we examined the metabolism of 13 potential carcinogenic PAs, 1 non-carcinogenic PA, and 5 PA <i>N</i>-oxides by male rat primary hepatocytes. With the exception of the nontoxic PA and vehicle control, all treated groups produced identical set of DHP-DNA adducts. These results support a general genotoxic mechanism mediated by the formation of characteristic DHP-DNA adducts leading to PA-induced liver tumor initiation.</p>","PeriodicalId":53200,"journal":{"name":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","volume":"39 4","pages":"357-372"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Metabolism of carcinogenic pyrrolizidine alkaloids and pyrrolizidine alkaloid <i>N</i>-oxides by rat primary hepatocytes generate the same characteristic DHP-DNA adducts.\",\"authors\":\"Xiaobo He,&nbsp;Qingsu Xia,&nbsp;Qiang Shi,&nbsp;Peter P Fu\",\"doi\":\"10.1080/26896583.2021.1954460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We recently established a genotoxic mechanism mediated by a set of (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5<i>H</i>-pyrrolizine (DHP)-DNA adducts, which lead to pyrrolizidine alkaloid (PA)-induced liver tumor initiation. This mechanism is involved in the metabolism of a series of carcinogenic PAs and PA <i>N</i>-oxides in rats <i>in vivo</i> and <i>in vitro</i>. There is a correlation between the order of liver tumor potency and the level of DHP-DNA adduct formation. Thus, these DHP-DNA adducts can be potential biomarkers of PA and PA <i>N</i>-oxide exposure and liver tumor initiation. To establish the generality of this mechanism, in the present study, we examined the metabolism of 13 potential carcinogenic PAs, 1 non-carcinogenic PA, and 5 PA <i>N</i>-oxides by male rat primary hepatocytes. With the exception of the nontoxic PA and vehicle control, all treated groups produced identical set of DHP-DNA adducts. These results support a general genotoxic mechanism mediated by the formation of characteristic DHP-DNA adducts leading to PA-induced liver tumor initiation.</p>\",\"PeriodicalId\":53200,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis\",\"volume\":\"39 4\",\"pages\":\"357-372\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/26896583.2021.1954460\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/8/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Toxicology and Carcinogenesis","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/26896583.2021.1954460","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

我们最近建立了一套(±)-6,7-二氢-7-羟基-1-羟甲基- 5h -吡咯利嗪(DHP)-DNA加合物介导的基因毒性机制,导致吡咯利嗪生物碱(PA)诱导的肝脏肿瘤起始。该机制参与了大鼠体内和体外一系列致癌物质PAs和PA n -氧化物的代谢。肝肿瘤效力的强弱顺序与DHP-DNA加合物的形成水平有相关性。因此,这些DHP-DNA加合物可能是PA和PA n -氧化物暴露和肝脏肿瘤起始的潜在生物标志物。为了确定这一机制的普遍性,在本研究中,我们检测了13种潜在致癌PA, 1种非致癌PA和5种PA n-氧化物在雄性大鼠原代肝细胞中的代谢。除无毒PA和对照外,所有处理组均产生相同的DHP-DNA加合物。这些结果支持一般的遗传毒性机制介导的形成特征DHP-DNA加合物导致pa诱导的肝肿瘤起始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolism of carcinogenic pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides by rat primary hepatocytes generate the same characteristic DHP-DNA adducts.

We recently established a genotoxic mechanism mediated by a set of (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, which lead to pyrrolizidine alkaloid (PA)-induced liver tumor initiation. This mechanism is involved in the metabolism of a series of carcinogenic PAs and PA N-oxides in rats in vivo and in vitro. There is a correlation between the order of liver tumor potency and the level of DHP-DNA adduct formation. Thus, these DHP-DNA adducts can be potential biomarkers of PA and PA N-oxide exposure and liver tumor initiation. To establish the generality of this mechanism, in the present study, we examined the metabolism of 13 potential carcinogenic PAs, 1 non-carcinogenic PA, and 5 PA N-oxides by male rat primary hepatocytes. With the exception of the nontoxic PA and vehicle control, all treated groups produced identical set of DHP-DNA adducts. These results support a general genotoxic mechanism mediated by the formation of characteristic DHP-DNA adducts leading to PA-induced liver tumor initiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信