{"title":"约旦建立首个新冠肺炎恢复期血浆生物库。","authors":"Lina Souan, Maher A Sughayer, Maha M Abu Alhowr","doi":"10.1089/bio.2022.0072","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Antibodies with the specialized ability to fight infection can be found in the blood of individuals who have recovered from or have been vaccinated against COVID-19. As a result, plasma from these individuals could be used to treat critically ill patients. This treatment is known as convalescent plasma (CCP) therapy. <b><i>Methods:</i></b> Plasma units from 1555 consented healthy blood bank donors were collected from February to September 2021. Blood units were tested for the quantitative determination of Immunoglobulin G (IgG) antibodies to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus using one of the following assays based on the availability of the kits: The LIAISON<sup>®</sup> SARS-CoV-2 TrimericS IgG assay or the Abbott SARS-CoV-2 IgG II Quant assay. <b><i>Results:</i></b> Among the tested donors, 1027 participants tested positive for neutralizing anti-SARS-CoV-2 IgG antibodies (66.04%). There were 484 donors whose plasma qualified to be used for CCP therapy (47.13%) and 214 CCP units were stored in the COVID-19 convalescent biobank. <b><i>Conclusion:</i></b> We were able to identify and store 214 fresh frozen plasma units qualified for CCP-plasma therapy for COVID-19 patients according to World Health Organization standards. Hence, we established the first COVID-19-convalescent plasma data and plasma biobank for treating COVID-19-infected cancer patients in Jordan and the region.</p>","PeriodicalId":49231,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"423-428"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Establishing the First COVID-19 Convalescent Plasma Biobank in Jordan.\",\"authors\":\"Lina Souan, Maher A Sughayer, Maha M Abu Alhowr\",\"doi\":\"10.1089/bio.2022.0072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Antibodies with the specialized ability to fight infection can be found in the blood of individuals who have recovered from or have been vaccinated against COVID-19. As a result, plasma from these individuals could be used to treat critically ill patients. This treatment is known as convalescent plasma (CCP) therapy. <b><i>Methods:</i></b> Plasma units from 1555 consented healthy blood bank donors were collected from February to September 2021. Blood units were tested for the quantitative determination of Immunoglobulin G (IgG) antibodies to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus using one of the following assays based on the availability of the kits: The LIAISON<sup>®</sup> SARS-CoV-2 TrimericS IgG assay or the Abbott SARS-CoV-2 IgG II Quant assay. <b><i>Results:</i></b> Among the tested donors, 1027 participants tested positive for neutralizing anti-SARS-CoV-2 IgG antibodies (66.04%). There were 484 donors whose plasma qualified to be used for CCP therapy (47.13%) and 214 CCP units were stored in the COVID-19 convalescent biobank. <b><i>Conclusion:</i></b> We were able to identify and store 214 fresh frozen plasma units qualified for CCP-plasma therapy for COVID-19 patients according to World Health Organization standards. Hence, we established the first COVID-19-convalescent plasma data and plasma biobank for treating COVID-19-infected cancer patients in Jordan and the region.</p>\",\"PeriodicalId\":49231,\"journal\":{\"name\":\"Biopreservation and Biobanking\",\"volume\":\" \",\"pages\":\"423-428\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopreservation and Biobanking\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2022.0072\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2022.0072","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Establishing the First COVID-19 Convalescent Plasma Biobank in Jordan.
Background: Antibodies with the specialized ability to fight infection can be found in the blood of individuals who have recovered from or have been vaccinated against COVID-19. As a result, plasma from these individuals could be used to treat critically ill patients. This treatment is known as convalescent plasma (CCP) therapy. Methods: Plasma units from 1555 consented healthy blood bank donors were collected from February to September 2021. Blood units were tested for the quantitative determination of Immunoglobulin G (IgG) antibodies to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus using one of the following assays based on the availability of the kits: The LIAISON® SARS-CoV-2 TrimericS IgG assay or the Abbott SARS-CoV-2 IgG II Quant assay. Results: Among the tested donors, 1027 participants tested positive for neutralizing anti-SARS-CoV-2 IgG antibodies (66.04%). There were 484 donors whose plasma qualified to be used for CCP therapy (47.13%) and 214 CCP units were stored in the COVID-19 convalescent biobank. Conclusion: We were able to identify and store 214 fresh frozen plasma units qualified for CCP-plasma therapy for COVID-19 patients according to World Health Organization standards. Hence, we established the first COVID-19-convalescent plasma data and plasma biobank for treating COVID-19-infected cancer patients in Jordan and the region.
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.