{"title":"泛素编辑酶TNFAIP3通过抑制炎症在癫痫大鼠中发挥神经保护作用。","authors":"Zhihong Zhuo, Huimin Kong, Peina Jin, Youhong Ren","doi":"10.4149/gpb_2022041","DOIUrl":null,"url":null,"abstract":"<p><p>The ubiquitin-editing enzyme TNF alpha-induced protein 3 (TNFAIP3) emerges protective roles in neurological disorder, such as cerebral trauma. However, the molecular mechanisms of TNFAIP3 in epilepsy are not very clear. Hereon, the epileptic mouse models and BV2 microglial cellular models were established by kainic acid (KA) and lipopolysaccharide (LPS) respectively. We found that TNFAIP3 was highly expressed in the hippocampus of epileptic mice. Besides, TNFAIP3 overexpression relieved the spatial learning and memory, reduced the hot plate latency, as well as inhibited neuronal apoptosis in KA-treated mice. In vivo and in vitro experiments indicated that inflammation, a key characteristic of epilepsy, was inhibited by TNFAIP3 upregulation, as evidenced by the downregulated expression of pro-inflammatory cytokine interleukin (IL)-1β and inducible NO synthase (iNOS), along with the decreased levels of NLRP3 inflammasome, which could activate inflammation. Collectively, we infer that TNFAIP3 relieves neuronal injury in epilepsy by suppressing inflammation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ubiquitin-editing enzyme TNFAIP3 exerts neuroprotective roles in epilepsy rats through repressing inflammation.\",\"authors\":\"Zhihong Zhuo, Huimin Kong, Peina Jin, Youhong Ren\",\"doi\":\"10.4149/gpb_2022041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ubiquitin-editing enzyme TNF alpha-induced protein 3 (TNFAIP3) emerges protective roles in neurological disorder, such as cerebral trauma. However, the molecular mechanisms of TNFAIP3 in epilepsy are not very clear. Hereon, the epileptic mouse models and BV2 microglial cellular models were established by kainic acid (KA) and lipopolysaccharide (LPS) respectively. We found that TNFAIP3 was highly expressed in the hippocampus of epileptic mice. Besides, TNFAIP3 overexpression relieved the spatial learning and memory, reduced the hot plate latency, as well as inhibited neuronal apoptosis in KA-treated mice. In vivo and in vitro experiments indicated that inflammation, a key characteristic of epilepsy, was inhibited by TNFAIP3 upregulation, as evidenced by the downregulated expression of pro-inflammatory cytokine interleukin (IL)-1β and inducible NO synthase (iNOS), along with the decreased levels of NLRP3 inflammasome, which could activate inflammation. Collectively, we infer that TNFAIP3 relieves neuronal injury in epilepsy by suppressing inflammation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4149/gpb_2022041\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2022041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The ubiquitin-editing enzyme TNFAIP3 exerts neuroprotective roles in epilepsy rats through repressing inflammation.
The ubiquitin-editing enzyme TNF alpha-induced protein 3 (TNFAIP3) emerges protective roles in neurological disorder, such as cerebral trauma. However, the molecular mechanisms of TNFAIP3 in epilepsy are not very clear. Hereon, the epileptic mouse models and BV2 microglial cellular models were established by kainic acid (KA) and lipopolysaccharide (LPS) respectively. We found that TNFAIP3 was highly expressed in the hippocampus of epileptic mice. Besides, TNFAIP3 overexpression relieved the spatial learning and memory, reduced the hot plate latency, as well as inhibited neuronal apoptosis in KA-treated mice. In vivo and in vitro experiments indicated that inflammation, a key characteristic of epilepsy, was inhibited by TNFAIP3 upregulation, as evidenced by the downregulated expression of pro-inflammatory cytokine interleukin (IL)-1β and inducible NO synthase (iNOS), along with the decreased levels of NLRP3 inflammasome, which could activate inflammation. Collectively, we infer that TNFAIP3 relieves neuronal injury in epilepsy by suppressing inflammation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.