Fangzhou Xu, Gege Dong, Jincheng Li, Qingbo Yang, Lei Wang, Yanna Zhao, Yihao Yan, Jinzhao Zhao, Shaopeng Pang, Dongju Guo, Yang Zhang, Jiancai Leng
{"title":"基于深度卷积生成对抗网络的脑卒中后运动图像康复脑电数据增强。","authors":"Fangzhou Xu, Gege Dong, Jincheng Li, Qingbo Yang, Lei Wang, Yanna Zhao, Yihao Yan, Jinzhao Zhao, Shaopeng Pang, Dongju Guo, Yang Zhang, Jiancai Leng","doi":"10.1142/S0129065722500393","DOIUrl":null,"url":null,"abstract":"<p><p>The motor imagery brain-computer interface (MI-BCI) system is currently one of the most advanced rehabilitation technologies, and it can be used to restore the motor function of stroke patients. The deep learning algorithms in the MI-BCI system require lots of training samples, but the electroencephalogram (EEG) data of stroke patients is quite scarce. Therefore, the expansion of EEG data has become an important part of stroke clinical rehabilitation research. In this paper, a deep convolution generative adversarial network (DCGAN) model is proposed to generate artificial EEG data and further expand the scale of the stroke dataset. First, multichannel one-dimensional EEG data is converted into a two-dimensional EEG spectrogram using EEG2Image based on the modified S-transform. Then, DCGAN is used to artificially generate EEG data based on MI. Finally, the validity of the generated artificial EEG data is proved. This paper preliminarily indicates that generating artificial stroke data is a promising strategy, which contributes to the further development of stroke clinical rehabilitation.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"32 9","pages":"2250039"},"PeriodicalIF":6.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Deep Convolution Generative Adversarial Network-Based Electroencephalogram Data Augmentation for Post-Stroke Rehabilitation with Motor Imagery.\",\"authors\":\"Fangzhou Xu, Gege Dong, Jincheng Li, Qingbo Yang, Lei Wang, Yanna Zhao, Yihao Yan, Jinzhao Zhao, Shaopeng Pang, Dongju Guo, Yang Zhang, Jiancai Leng\",\"doi\":\"10.1142/S0129065722500393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The motor imagery brain-computer interface (MI-BCI) system is currently one of the most advanced rehabilitation technologies, and it can be used to restore the motor function of stroke patients. The deep learning algorithms in the MI-BCI system require lots of training samples, but the electroencephalogram (EEG) data of stroke patients is quite scarce. Therefore, the expansion of EEG data has become an important part of stroke clinical rehabilitation research. In this paper, a deep convolution generative adversarial network (DCGAN) model is proposed to generate artificial EEG data and further expand the scale of the stroke dataset. First, multichannel one-dimensional EEG data is converted into a two-dimensional EEG spectrogram using EEG2Image based on the modified S-transform. Then, DCGAN is used to artificially generate EEG data based on MI. Finally, the validity of the generated artificial EEG data is proved. This paper preliminarily indicates that generating artificial stroke data is a promising strategy, which contributes to the further development of stroke clinical rehabilitation.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":\"32 9\",\"pages\":\"2250039\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500393\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500393","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep Convolution Generative Adversarial Network-Based Electroencephalogram Data Augmentation for Post-Stroke Rehabilitation with Motor Imagery.
The motor imagery brain-computer interface (MI-BCI) system is currently one of the most advanced rehabilitation technologies, and it can be used to restore the motor function of stroke patients. The deep learning algorithms in the MI-BCI system require lots of training samples, but the electroencephalogram (EEG) data of stroke patients is quite scarce. Therefore, the expansion of EEG data has become an important part of stroke clinical rehabilitation research. In this paper, a deep convolution generative adversarial network (DCGAN) model is proposed to generate artificial EEG data and further expand the scale of the stroke dataset. First, multichannel one-dimensional EEG data is converted into a two-dimensional EEG spectrogram using EEG2Image based on the modified S-transform. Then, DCGAN is used to artificially generate EEG data based on MI. Finally, the validity of the generated artificial EEG data is proved. This paper preliminarily indicates that generating artificial stroke data is a promising strategy, which contributes to the further development of stroke clinical rehabilitation.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.