运动通过中枢GLP-1受体改善空间学习和记忆表现。

IF 2.7 4区 医学 Q2 CLINICAL NEUROLOGY
Behavioural Neurology Pub Date : 2022-06-21 eCollection Date: 2022-01-01 DOI:10.1155/2022/2900628
Majid Taati, Peyman Esmaeili Fard Barzegar, Abbas Raisi
{"title":"运动通过中枢GLP-1受体改善空间学习和记忆表现。","authors":"Majid Taati,&nbsp;Peyman Esmaeili Fard Barzegar,&nbsp;Abbas Raisi","doi":"10.1155/2022/2900628","DOIUrl":null,"url":null,"abstract":"<p><p>The glucagon-like peptide 1 (GLP-1) is a hormone which is produced in the enteroendocrine L-cells in the ileum and the neurons of nucleus tractus solitarius (NTS) in the brain which has numerous metabolic effects. The central GLP-1R's role in cognitive functioning is well known. On the contrary, it has been shown that exercise has positive effects on brain function. So, we decided to elucidate whether the central GLP-1 has a role in memory and learning. Thirty-two rats were used in this experiment in 4 groups. After anesthetizing the rats, the right lateral ventricle was detected, and a cannula was directed to the ventricle. Ten micrograms of exendin-3 or sterile saline, according to the group, was injected via ICV once daily for seven days. The rats in the exercise group considered an exercise period of one hour each day (17 meters per minute) for seven consecutive days. To evaluate the performance of memory and learning, a standard Morris water maze (MWM) tank was utilized. According to the results, the TE-exendin group showed a statistically significant difference from the TE-SAL group in both parameters of latency and time in the zone. In summary, memory and learning were improved by GLP-1R in the exercise group, but not in the sedentary group, which we can hypothesize that exercise can affect memory and learning through this pathway.</p>","PeriodicalId":50733,"journal":{"name":"Behavioural Neurology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239811/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exercise Improves Spatial Learning and Memory Performance through the Central GLP-1 Receptors.\",\"authors\":\"Majid Taati,&nbsp;Peyman Esmaeili Fard Barzegar,&nbsp;Abbas Raisi\",\"doi\":\"10.1155/2022/2900628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The glucagon-like peptide 1 (GLP-1) is a hormone which is produced in the enteroendocrine L-cells in the ileum and the neurons of nucleus tractus solitarius (NTS) in the brain which has numerous metabolic effects. The central GLP-1R's role in cognitive functioning is well known. On the contrary, it has been shown that exercise has positive effects on brain function. So, we decided to elucidate whether the central GLP-1 has a role in memory and learning. Thirty-two rats were used in this experiment in 4 groups. After anesthetizing the rats, the right lateral ventricle was detected, and a cannula was directed to the ventricle. Ten micrograms of exendin-3 or sterile saline, according to the group, was injected via ICV once daily for seven days. The rats in the exercise group considered an exercise period of one hour each day (17 meters per minute) for seven consecutive days. To evaluate the performance of memory and learning, a standard Morris water maze (MWM) tank was utilized. According to the results, the TE-exendin group showed a statistically significant difference from the TE-SAL group in both parameters of latency and time in the zone. In summary, memory and learning were improved by GLP-1R in the exercise group, but not in the sedentary group, which we can hypothesize that exercise can affect memory and learning through this pathway.</p>\",\"PeriodicalId\":50733,\"journal\":{\"name\":\"Behavioural Neurology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239811/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2900628\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/2900628","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胰高血糖素样肽1 (glucagon-like peptide 1, GLP-1)是一种在回肠肠内分泌l细胞和脑孤束核(NTS)神经元中产生的具有多种代谢作用的激素。GLP-1R在认知功能中的核心作用是众所周知的。相反,已经证明运动对大脑功能有积极的影响。因此,我们决定阐明GLP-1是否在记忆和学习中起作用。实验选用32只大鼠,分为4组。麻醉大鼠后,检测右侧脑室,并将导管插入脑室。各组按10微克exendin-3或无菌生理盐水,每日1次经ICV注射,连续7天。运动组大鼠每天运动1小时(每分钟17米),连续7天。采用标准莫里斯水迷宫(Morris water maze, MWM)水箱评价大鼠的记忆和学习能力。结果显示,TE-exendin组与TE-SAL组在潜伏期和区域内时间参数上均有统计学差异。综上所述,GLP-1R在运动组中改善了记忆和学习,而在久坐组中没有改善,我们可以假设运动可以通过这一途径影响记忆和学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exercise Improves Spatial Learning and Memory Performance through the Central GLP-1 Receptors.

Exercise Improves Spatial Learning and Memory Performance through the Central GLP-1 Receptors.

Exercise Improves Spatial Learning and Memory Performance through the Central GLP-1 Receptors.

The glucagon-like peptide 1 (GLP-1) is a hormone which is produced in the enteroendocrine L-cells in the ileum and the neurons of nucleus tractus solitarius (NTS) in the brain which has numerous metabolic effects. The central GLP-1R's role in cognitive functioning is well known. On the contrary, it has been shown that exercise has positive effects on brain function. So, we decided to elucidate whether the central GLP-1 has a role in memory and learning. Thirty-two rats were used in this experiment in 4 groups. After anesthetizing the rats, the right lateral ventricle was detected, and a cannula was directed to the ventricle. Ten micrograms of exendin-3 or sterile saline, according to the group, was injected via ICV once daily for seven days. The rats in the exercise group considered an exercise period of one hour each day (17 meters per minute) for seven consecutive days. To evaluate the performance of memory and learning, a standard Morris water maze (MWM) tank was utilized. According to the results, the TE-exendin group showed a statistically significant difference from the TE-SAL group in both parameters of latency and time in the zone. In summary, memory and learning were improved by GLP-1R in the exercise group, but not in the sedentary group, which we can hypothesize that exercise can affect memory and learning through this pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioural Neurology
Behavioural Neurology 医学-临床神经学
CiteScore
5.40
自引率
3.60%
发文量
52
审稿时长
>12 weeks
期刊介绍: Behavioural Neurology is a peer-reviewed, Open Access journal which publishes original research articles, review articles and clinical studies based on various diseases and syndromes in behavioural neurology. The aim of the journal is to provide a platform for researchers and clinicians working in various fields of neurology including cognitive neuroscience, neuropsychology and neuropsychiatry. Topics of interest include: ADHD Aphasia Autism Alzheimer’s Disease Behavioural Disorders Dementia Epilepsy Multiple Sclerosis Parkinson’s Disease Psychosis Stroke Traumatic brain injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信