贝叶斯统计:模拟牙科数据集的演练。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eldon Sorensen, Chandler Pendleton, Xian Jin Xie
{"title":"贝叶斯统计:模拟牙科数据集的演练。","authors":"Eldon Sorensen,&nbsp;Chandler Pendleton,&nbsp;Xian Jin Xie","doi":"10.11607/jomi.10210","DOIUrl":null,"url":null,"abstract":"<p><p>When a clinician sees a patient with a complication, they often go through a Bayesian style of logic, most likely without even knowing it. They assess whether they have seen the complication before, provide an intervention based on historical knowledge of what leads to improvement, and then later assess how the intervention is performed. This process, which is routine in clinical practice, can be mathematically extended into an alternative way of performing statistical analyses to assess clinical research. However, this process is contrary to the most common statistical methods used in dental research: frequentist statistics. Though powerful, frequentist methods come with advantages and disadvantages. Bayesian statistics are an alternative method, one that mirrors how we as researchers think and process new information. In this primer, a walkthrough of Bayesian statistics is performed by constructing priors, defining the likelihood, and using the posterior result to draw conclusions on parameters of interest. The motivating example for this walkthrough was a Bayesian analog to logistic regression, fit using a simulated dental-related dataset of 50 patients who received a dental implant-classified as either within or outside normal limits-from practitioners who did or did not receive a training course in implant placement. The results of the Bayesian and traditional frequentist logistic regression models were compared, resulting in very similar conclusions regarding which parameters seemed to be strongly associated with the outcome.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Statistics: A Walkthrough with a Simulated Dental Dataset.\",\"authors\":\"Eldon Sorensen,&nbsp;Chandler Pendleton,&nbsp;Xian Jin Xie\",\"doi\":\"10.11607/jomi.10210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When a clinician sees a patient with a complication, they often go through a Bayesian style of logic, most likely without even knowing it. They assess whether they have seen the complication before, provide an intervention based on historical knowledge of what leads to improvement, and then later assess how the intervention is performed. This process, which is routine in clinical practice, can be mathematically extended into an alternative way of performing statistical analyses to assess clinical research. However, this process is contrary to the most common statistical methods used in dental research: frequentist statistics. Though powerful, frequentist methods come with advantages and disadvantages. Bayesian statistics are an alternative method, one that mirrors how we as researchers think and process new information. In this primer, a walkthrough of Bayesian statistics is performed by constructing priors, defining the likelihood, and using the posterior result to draw conclusions on parameters of interest. The motivating example for this walkthrough was a Bayesian analog to logistic regression, fit using a simulated dental-related dataset of 50 patients who received a dental implant-classified as either within or outside normal limits-from practitioners who did or did not receive a training course in implant placement. The results of the Bayesian and traditional frequentist logistic regression models were compared, resulting in very similar conclusions regarding which parameters seemed to be strongly associated with the outcome.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.11607/jomi.10210\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.11607/jomi.10210","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

当一个临床医生看到一个有并发症的病人时,他们经常会经历贝叶斯式的逻辑,很可能他们自己都不知道。他们评估他们以前是否见过并发症,根据导致改善的历史知识提供干预措施,然后评估干预措施的执行情况。这一过程在临床实践中是常规的,可以在数学上扩展为执行统计分析以评估临床研究的替代方法。然而,这个过程与牙科研究中最常用的统计方法相反:频率统计。虽然功能强大,但频率方法有优点也有缺点。贝叶斯统计是另一种方法,它反映了我们作为研究人员如何思考和处理新信息。在本入门中,通过构建先验、定义似然和使用后验结果得出有关感兴趣参数的结论,对贝叶斯统计进行了演练。本演练的激励示例是对逻辑回归的贝叶斯模拟,使用模拟的牙科相关数据集进行拟合,该数据集包含50名接受牙科种植的患者(分为正常范围内或正常范围外),来自接受或未接受种植种植培训课程的从业人员。贝叶斯和传统频率逻辑回归模型的结果进行了比较,得出了非常相似的结论,关于哪些参数似乎与结果密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Statistics: A Walkthrough with a Simulated Dental Dataset.

When a clinician sees a patient with a complication, they often go through a Bayesian style of logic, most likely without even knowing it. They assess whether they have seen the complication before, provide an intervention based on historical knowledge of what leads to improvement, and then later assess how the intervention is performed. This process, which is routine in clinical practice, can be mathematically extended into an alternative way of performing statistical analyses to assess clinical research. However, this process is contrary to the most common statistical methods used in dental research: frequentist statistics. Though powerful, frequentist methods come with advantages and disadvantages. Bayesian statistics are an alternative method, one that mirrors how we as researchers think and process new information. In this primer, a walkthrough of Bayesian statistics is performed by constructing priors, defining the likelihood, and using the posterior result to draw conclusions on parameters of interest. The motivating example for this walkthrough was a Bayesian analog to logistic regression, fit using a simulated dental-related dataset of 50 patients who received a dental implant-classified as either within or outside normal limits-from practitioners who did or did not receive a training course in implant placement. The results of the Bayesian and traditional frequentist logistic regression models were compared, resulting in very similar conclusions regarding which parameters seemed to be strongly associated with the outcome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信