基于计算机的小测试项目中的快速猜测行为建模。

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Applied Psychological Measurement Pub Date : 2023-01-01 Epub Date: 2022-09-09 DOI:10.1177/01466216221125177
Kuan-Yu Jin, Chia-Ling Hsu, Ming Ming Chiu, Po-Hsi Chen
{"title":"基于计算机的小测试项目中的快速猜测行为建模。","authors":"Kuan-Yu Jin, Chia-Ling Hsu, Ming Ming Chiu, Po-Hsi Chen","doi":"10.1177/01466216221125177","DOIUrl":null,"url":null,"abstract":"<p><p>In traditional test models, test items are independent, and test-takers slowly and thoughtfully respond to each test item. However, some test items have a common stimulus (dependent test items in a testlet), and sometimes test-takers lack motivation, knowledge, or time (speededness), so they perform rapid guessing (RG). Ignoring the dependence in responses to testlet items can negatively bias standard errors of measurement, and ignoring RG by fitting a simpler item response theory (IRT) model can bias the results. Because computer-based testing captures response times on testlet responses, we propose a mixture testlet IRT model with item responses and response time to model RG behaviors in computer-based testlet items. Two simulation studies with Markov chain Monte Carlo estimation using the JAGS program showed (a) good recovery of the item and person parameters in this new model and (b) the harmful consequences of ignoring RG (biased parameter estimates: overestimated item difficulties, underestimated time intensities, underestimated respondent latent speed parameters, and overestimated precision of respondent latent estimates). The application of IRT models with and without RG to data from a computer-based language test showed parameter differences resembling those in the simulations.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679923/pdf/","citationCount":"3","resultStr":"{\"title\":\"Modeling Rapid Guessing Behaviors in Computer-Based Testlet Items.\",\"authors\":\"Kuan-Yu Jin, Chia-Ling Hsu, Ming Ming Chiu, Po-Hsi Chen\",\"doi\":\"10.1177/01466216221125177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In traditional test models, test items are independent, and test-takers slowly and thoughtfully respond to each test item. However, some test items have a common stimulus (dependent test items in a testlet), and sometimes test-takers lack motivation, knowledge, or time (speededness), so they perform rapid guessing (RG). Ignoring the dependence in responses to testlet items can negatively bias standard errors of measurement, and ignoring RG by fitting a simpler item response theory (IRT) model can bias the results. Because computer-based testing captures response times on testlet responses, we propose a mixture testlet IRT model with item responses and response time to model RG behaviors in computer-based testlet items. Two simulation studies with Markov chain Monte Carlo estimation using the JAGS program showed (a) good recovery of the item and person parameters in this new model and (b) the harmful consequences of ignoring RG (biased parameter estimates: overestimated item difficulties, underestimated time intensities, underestimated respondent latent speed parameters, and overestimated precision of respondent latent estimates). The application of IRT models with and without RG to data from a computer-based language test showed parameter differences resembling those in the simulations.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679923/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216221125177\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221125177","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3

摘要

在传统的测试模式中,测试项目是独立的,应试者对每个测试项目都会慢慢地、深思熟虑地做出反应。然而,有些测试项目有共同的刺激(子测试项目中的从属测试项目),有时应试者缺乏动机、知识或时间(速度),因此他们会进行快速猜测(RG)。如果忽略了小测验项目反应的依赖性,就会对测量的标准误差产生负面偏差,而通过拟合较简单的项目反应理论(IRT)模型来忽略 RG,也会使结果产生偏差。由于基于计算机的测试捕捉了小测验反应的反应时间,因此我们提出了一个包含项目反应和反应时间的混合小测验 IRT 模型,以模拟基于计算机的小测验项目中的 RG 行为。使用 JAGS 程序进行马尔可夫链蒙特卡罗估计的两项模拟研究表明:(a) 在这一新模型中,项目和人的参数恢复良好;(b) 忽略 RG 的有害后果(有偏差的参数估计:高估项目难度、低估时间强度、低估应答者潜在速度参数以及高估应答者潜在估计的精确度)。将有无 RG 的 IRT 模型应用于基于计算机的语言测试数据,结果显示参数差异与模拟结果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Rapid Guessing Behaviors in Computer-Based Testlet Items.

In traditional test models, test items are independent, and test-takers slowly and thoughtfully respond to each test item. However, some test items have a common stimulus (dependent test items in a testlet), and sometimes test-takers lack motivation, knowledge, or time (speededness), so they perform rapid guessing (RG). Ignoring the dependence in responses to testlet items can negatively bias standard errors of measurement, and ignoring RG by fitting a simpler item response theory (IRT) model can bias the results. Because computer-based testing captures response times on testlet responses, we propose a mixture testlet IRT model with item responses and response time to model RG behaviors in computer-based testlet items. Two simulation studies with Markov chain Monte Carlo estimation using the JAGS program showed (a) good recovery of the item and person parameters in this new model and (b) the harmful consequences of ignoring RG (biased parameter estimates: overestimated item difficulties, underestimated time intensities, underestimated respondent latent speed parameters, and overestimated precision of respondent latent estimates). The application of IRT models with and without RG to data from a computer-based language test showed parameter differences resembling those in the simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信