{"title":"研究(4-羟基苯基)氯甲烷磺酸盐对甲烷生成和脱氯的抑制作用。","authors":"Yudai Hotta, Chizu Yagoshi, Ryo Okazaki, Mitsumasa Ikeda","doi":"10.1584/jpestics.D21-071","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to demonstrate the inhibitory effect of chemicals on methane emissions in paddy soil. We found that (4-hydroxyphenyl) chloromethanesulfonate (C-1) has a methanogenic inhibition activity, and we studied its inhibition mechanism using laboratory tests. The study found that C-1 treatment of flooded soil did not significantly affect the bacterial community but rather the archaeal community; particularly, <i>Methanosarcina</i> spp. C-1 strongly inhibited the aceticlastic methanogenesis route. It was suggested that the inhibitory target of C-1 was different from the well-known methanogenic inhibitor 2-bromoethanesulfonate, which targets methyl-coenzyme M reductase of methanogen. In addition, C-1 had a secondary effect of inhibiting the dechlorination of chlorophenols. Although field trials are required as the next development step, C-1 can be used to reduce methane emissions from paddy fields, one of the largest sources in the agricultural sector.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/73/jps-47-2-D21-071.PMC9184246.pdf","citationCount":"0","resultStr":"{\"title\":\"Studies on the inhibition of methanogenesis and dechlorination by (4-hydroxyphenyl) chloromethanesulfonate.\",\"authors\":\"Yudai Hotta, Chizu Yagoshi, Ryo Okazaki, Mitsumasa Ikeda\",\"doi\":\"10.1584/jpestics.D21-071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to demonstrate the inhibitory effect of chemicals on methane emissions in paddy soil. We found that (4-hydroxyphenyl) chloromethanesulfonate (C-1) has a methanogenic inhibition activity, and we studied its inhibition mechanism using laboratory tests. The study found that C-1 treatment of flooded soil did not significantly affect the bacterial community but rather the archaeal community; particularly, <i>Methanosarcina</i> spp. C-1 strongly inhibited the aceticlastic methanogenesis route. It was suggested that the inhibitory target of C-1 was different from the well-known methanogenic inhibitor 2-bromoethanesulfonate, which targets methyl-coenzyme M reductase of methanogen. In addition, C-1 had a secondary effect of inhibiting the dechlorination of chlorophenols. Although field trials are required as the next development step, C-1 can be used to reduce methane emissions from paddy fields, one of the largest sources in the agricultural sector.</p>\",\"PeriodicalId\":16712,\"journal\":{\"name\":\"Journal of Pesticide Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/73/jps-47-2-D21-071.PMC9184246.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pesticide Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1584/jpestics.D21-071\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1584/jpestics.D21-071","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Studies on the inhibition of methanogenesis and dechlorination by (4-hydroxyphenyl) chloromethanesulfonate.
The purpose of this study was to demonstrate the inhibitory effect of chemicals on methane emissions in paddy soil. We found that (4-hydroxyphenyl) chloromethanesulfonate (C-1) has a methanogenic inhibition activity, and we studied its inhibition mechanism using laboratory tests. The study found that C-1 treatment of flooded soil did not significantly affect the bacterial community but rather the archaeal community; particularly, Methanosarcina spp. C-1 strongly inhibited the aceticlastic methanogenesis route. It was suggested that the inhibitory target of C-1 was different from the well-known methanogenic inhibitor 2-bromoethanesulfonate, which targets methyl-coenzyme M reductase of methanogen. In addition, C-1 had a secondary effect of inhibiting the dechlorination of chlorophenols. Although field trials are required as the next development step, C-1 can be used to reduce methane emissions from paddy fields, one of the largest sources in the agricultural sector.
期刊介绍:
The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.