Meihua Qiao , Liqiang Zhang , Jiao Chang , Haoxuan Li , Jingkang Li , Weicheng Wang , Gailing Yuan , Jianguo Su
{"title":"RPA- lfd和基于荧光探针的RPA快速灵敏检测黑斑蛙致病性伊丽莎白金花","authors":"Meihua Qiao , Liqiang Zhang , Jiao Chang , Haoxuan Li , Jingkang Li , Weicheng Wang , Gailing Yuan , Jianguo Su","doi":"10.1016/j.fsirep.2022.100059","DOIUrl":null,"url":null,"abstract":"<div><p><em>Elizabethkingia miricola</em> is a highly infectious pathogen, which causes high mortality rate in frog farming. Therefore, it is urgent to develop a rapid and sensitive detection method. In this study, two rapid and specific methods including recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) and fluorescent probe-based recombinase polymerase amplification (exo RPA) were established to effectively detect <em>E. miricola</em>, which can accomplish the examination at 38 °C within 30 min. The limiting sensitivity of RPA-LFD and exo RPA (10<sup>2</sup> copies/μL) was ten-fold higher than that in generic PCR assay. The specificities of the two methods were verified by detecting multiple DNA samples (<em>E. miricola, Staphylococcus aureus, Aeromonas hydrophila, Aeromonas veronii</em>, CyHV-2 and <em>Edwardsiella ictaluri</em>), and the result showed that the single band was displayed in <em>E. miricola</em> DNA only. By tissue bacterial load and qRT-PCR assays, brain is the most sensitive tissue. Random 24 black spotted frog brain samples from farms were tested by generic PCR, basic RPA, RPA-LFD and exo RPA assays, and the results showed that RPA-LFD and exo RPA methods were able to detect <em>E. miricola</em> accurately and rapidly. In summary, the methods of RPA-LFD and exo RPA were able to detect <em>E. miricola</em> conveniently, rapidly, accurately and sensitively. This study provides prospective methods to detect <em>E. miricola</em> infection in frog culture.</p></div>","PeriodicalId":73029,"journal":{"name":"Fish and shellfish immunology reports","volume":"3 ","pages":"Article 100059"},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/57/main.PMC9680066.pdf","citationCount":"2","resultStr":"{\"title\":\"Rapid and sensitive detection of pathogenic Elizabethkingia miricola in black spotted frog by RPA-LFD and fluorescent probe-based RPA\",\"authors\":\"Meihua Qiao , Liqiang Zhang , Jiao Chang , Haoxuan Li , Jingkang Li , Weicheng Wang , Gailing Yuan , Jianguo Su\",\"doi\":\"10.1016/j.fsirep.2022.100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Elizabethkingia miricola</em> is a highly infectious pathogen, which causes high mortality rate in frog farming. Therefore, it is urgent to develop a rapid and sensitive detection method. In this study, two rapid and specific methods including recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) and fluorescent probe-based recombinase polymerase amplification (exo RPA) were established to effectively detect <em>E. miricola</em>, which can accomplish the examination at 38 °C within 30 min. The limiting sensitivity of RPA-LFD and exo RPA (10<sup>2</sup> copies/μL) was ten-fold higher than that in generic PCR assay. The specificities of the two methods were verified by detecting multiple DNA samples (<em>E. miricola, Staphylococcus aureus, Aeromonas hydrophila, Aeromonas veronii</em>, CyHV-2 and <em>Edwardsiella ictaluri</em>), and the result showed that the single band was displayed in <em>E. miricola</em> DNA only. By tissue bacterial load and qRT-PCR assays, brain is the most sensitive tissue. Random 24 black spotted frog brain samples from farms were tested by generic PCR, basic RPA, RPA-LFD and exo RPA assays, and the results showed that RPA-LFD and exo RPA methods were able to detect <em>E. miricola</em> accurately and rapidly. In summary, the methods of RPA-LFD and exo RPA were able to detect <em>E. miricola</em> conveniently, rapidly, accurately and sensitively. This study provides prospective methods to detect <em>E. miricola</em> infection in frog culture.</p></div>\",\"PeriodicalId\":73029,\"journal\":{\"name\":\"Fish and shellfish immunology reports\",\"volume\":\"3 \",\"pages\":\"Article 100059\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/57/main.PMC9680066.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and shellfish immunology reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266701192200010X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and shellfish immunology reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266701192200010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
Rapid and sensitive detection of pathogenic Elizabethkingia miricola in black spotted frog by RPA-LFD and fluorescent probe-based RPA
Elizabethkingia miricola is a highly infectious pathogen, which causes high mortality rate in frog farming. Therefore, it is urgent to develop a rapid and sensitive detection method. In this study, two rapid and specific methods including recombinase polymerase amplification combined with lateral flow dipstick (RPA-LFD) and fluorescent probe-based recombinase polymerase amplification (exo RPA) were established to effectively detect E. miricola, which can accomplish the examination at 38 °C within 30 min. The limiting sensitivity of RPA-LFD and exo RPA (102 copies/μL) was ten-fold higher than that in generic PCR assay. The specificities of the two methods were verified by detecting multiple DNA samples (E. miricola, Staphylococcus aureus, Aeromonas hydrophila, Aeromonas veronii, CyHV-2 and Edwardsiella ictaluri), and the result showed that the single band was displayed in E. miricola DNA only. By tissue bacterial load and qRT-PCR assays, brain is the most sensitive tissue. Random 24 black spotted frog brain samples from farms were tested by generic PCR, basic RPA, RPA-LFD and exo RPA assays, and the results showed that RPA-LFD and exo RPA methods were able to detect E. miricola accurately and rapidly. In summary, the methods of RPA-LFD and exo RPA were able to detect E. miricola conveniently, rapidly, accurately and sensitively. This study provides prospective methods to detect E. miricola infection in frog culture.