两种轮椅推进速度下肩痛与关节反作用力及肌肉力矩的关系

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Journal of Applied Biomechanics Pub Date : 2022-11-11 Print Date: 2022-12-01 DOI:10.1123/jab.2022-0066
Li-Shan Chang, Xiong-Wen Ke, Weerawat Limroongreungrat, Yong Tai Wang
{"title":"两种轮椅推进速度下肩痛与关节反作用力及肌肉力矩的关系","authors":"Li-Shan Chang,&nbsp;Xiong-Wen Ke,&nbsp;Weerawat Limroongreungrat,&nbsp;Yong Tai Wang","doi":"10.1123/jab.2022-0066","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to determine shoulder joint reaction forces and muscle moments during 2 speeds (1.3 and 2.2 m/s) of wheelchair propulsion and to investigate the relationship between joints reaction forces, muscle moments, and shoulder pain. The measurements were obtained from 20 manual wheelchair users. A JR3 6-channel load sensor (±1% error) and a Qualisys system were used to record 3-dimensional pushrim kinetics and kinematics. A 3-dimensional inverse dynamic model was generated to compute joint kinetics. The results demonstrated significant differences in shoulder joint forces and moments (P < .01) between the 2 speeds of wheelchair propulsion. The greatest peak shoulder joint forces during the drive phase were anterior directed (Fy, 184.69 N), and the greatest joint moment was the shoulder flexion direction (flexion moment, 35.79 N·m) at 2.2 m/s. All the shoulder joint reaction forces and flexion moment were significantly (P < .05) related to shoulder pain index. The forces combined in superior and anterior direction found at the shoulder joint may contribute to the compression of subacromial structure and predispose manual wheelchair users to potential rotator cuff impingement syndrome.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"38 6","pages":"404-411"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship Between Shoulder Pain and Joint Reaction Forces and Muscle Moments During 2 Speeds of Wheelchair Propulsion.\",\"authors\":\"Li-Shan Chang,&nbsp;Xiong-Wen Ke,&nbsp;Weerawat Limroongreungrat,&nbsp;Yong Tai Wang\",\"doi\":\"10.1123/jab.2022-0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study was to determine shoulder joint reaction forces and muscle moments during 2 speeds (1.3 and 2.2 m/s) of wheelchair propulsion and to investigate the relationship between joints reaction forces, muscle moments, and shoulder pain. The measurements were obtained from 20 manual wheelchair users. A JR3 6-channel load sensor (±1% error) and a Qualisys system were used to record 3-dimensional pushrim kinetics and kinematics. A 3-dimensional inverse dynamic model was generated to compute joint kinetics. The results demonstrated significant differences in shoulder joint forces and moments (P < .01) between the 2 speeds of wheelchair propulsion. The greatest peak shoulder joint forces during the drive phase were anterior directed (Fy, 184.69 N), and the greatest joint moment was the shoulder flexion direction (flexion moment, 35.79 N·m) at 2.2 m/s. All the shoulder joint reaction forces and flexion moment were significantly (P < .05) related to shoulder pain index. The forces combined in superior and anterior direction found at the shoulder joint may contribute to the compression of subacromial structure and predispose manual wheelchair users to potential rotator cuff impingement syndrome.</p>\",\"PeriodicalId\":54883,\"journal\":{\"name\":\"Journal of Applied Biomechanics\",\"volume\":\"38 6\",\"pages\":\"404-411\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1123/jab.2022-0066\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0066","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是测定轮椅推进速度(1.3和2.2 m/s)下肩关节反作用力和肌肉力矩,并探讨关节反作用力、肌肉力矩与肩关节疼痛的关系。测量数据来自20名手动轮椅使用者。使用JR3 6通道负载传感器(±1%误差)和Qualisys系统记录三维推环动力学和运动学。建立三维逆动力学模型,计算关节动力学。结果表明,两种轮椅推进速度在肩关节力和力矩方面存在显著差异(P < 0.01)。驱动阶段肩关节力峰值为前向(Fy, 184.69 N),关节力矩峰值为肩关节屈曲方向(弯矩,35.79 N·m),速度为2.2 m/s。肩关节反作用力和屈曲力矩与肩关节疼痛指数均有显著相关(P < 0.05)。在肩关节处发现的上、前方向的合力可能导致肩峰下结构的压迫,使手动轮椅使用者容易发生潜在的肩袖撞击综合征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship Between Shoulder Pain and Joint Reaction Forces and Muscle Moments During 2 Speeds of Wheelchair Propulsion.

The purpose of this study was to determine shoulder joint reaction forces and muscle moments during 2 speeds (1.3 and 2.2 m/s) of wheelchair propulsion and to investigate the relationship between joints reaction forces, muscle moments, and shoulder pain. The measurements were obtained from 20 manual wheelchair users. A JR3 6-channel load sensor (±1% error) and a Qualisys system were used to record 3-dimensional pushrim kinetics and kinematics. A 3-dimensional inverse dynamic model was generated to compute joint kinetics. The results demonstrated significant differences in shoulder joint forces and moments (P < .01) between the 2 speeds of wheelchair propulsion. The greatest peak shoulder joint forces during the drive phase were anterior directed (Fy, 184.69 N), and the greatest joint moment was the shoulder flexion direction (flexion moment, 35.79 N·m) at 2.2 m/s. All the shoulder joint reaction forces and flexion moment were significantly (P < .05) related to shoulder pain index. The forces combined in superior and anterior direction found at the shoulder joint may contribute to the compression of subacromial structure and predispose manual wheelchair users to potential rotator cuff impingement syndrome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信