{"title":"模拟复合材料疲劳裂纹扩展的周动力学方法。","authors":"Tao Ni, Mirco Zaccariotto, Ugo Galvanetto","doi":"10.1098/rsta.2021.0217","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, a numerical tool is proposed in the framework of bond-based peridynamics to simulate fatigue crack propagation in composite materials and structures. The cycle-dependent damage-cumulative model derived from Peerlings' law and applied to a bilinear constitutive law is used to evaluate the fatigue degradation of the bond stiffness. Several benchmark cases are studied to validate the proposed approach. Finally, static and fatigue crack propagations in composite systems with single or multi-inclusions are simulated to illustrate the capabilities and characteristics of the developed approach. This article is part of the theme issue 'Ageing and durability of composite materials'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210217"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A peridynamic approach to simulating fatigue crack propagation in composite materials.\",\"authors\":\"Tao Ni, Mirco Zaccariotto, Ugo Galvanetto\",\"doi\":\"10.1098/rsta.2021.0217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, a numerical tool is proposed in the framework of bond-based peridynamics to simulate fatigue crack propagation in composite materials and structures. The cycle-dependent damage-cumulative model derived from Peerlings' law and applied to a bilinear constitutive law is used to evaluate the fatigue degradation of the bond stiffness. Several benchmark cases are studied to validate the proposed approach. Finally, static and fatigue crack propagations in composite systems with single or multi-inclusions are simulated to illustrate the capabilities and characteristics of the developed approach. This article is part of the theme issue 'Ageing and durability of composite materials'.</p>\",\"PeriodicalId\":286094,\"journal\":{\"name\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"volume\":\" \",\"pages\":\"20210217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A peridynamic approach to simulating fatigue crack propagation in composite materials.
In this article, a numerical tool is proposed in the framework of bond-based peridynamics to simulate fatigue crack propagation in composite materials and structures. The cycle-dependent damage-cumulative model derived from Peerlings' law and applied to a bilinear constitutive law is used to evaluate the fatigue degradation of the bond stiffness. Several benchmark cases are studied to validate the proposed approach. Finally, static and fatigue crack propagations in composite systems with single or multi-inclusions are simulated to illustrate the capabilities and characteristics of the developed approach. This article is part of the theme issue 'Ageing and durability of composite materials'.