Ahmad R Alsaber, Parul Setiya, Ahmad T Al-Sultan, Jiazhu Pan
{"title":"探索空气污染对COVID-19入院病例的影响:来自矢量误差修正模型(VECM)方法的证据,用于解释科威特空气污染物与COVID-19病例之间的关系。","authors":"Ahmad R Alsaber, Parul Setiya, Ahmad T Al-Sultan, Jiazhu Pan","doi":"10.1007/s42081-022-00165-z","DOIUrl":null,"url":null,"abstract":"<p><p>In urban areas, air pollution is one of the most serious global environmental issues. Using time-series approaches, this study looked into the validity of the relationship between air pollution and COVID-19 hospitalization. This time series research was carried out in the state of Kuwait; stationarity test, cointegration test, Granger causality and stability test, and test on multivariate time-series using the Vector Error Correction Model (VECM) technique. The findings reveal that the concentration rate of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , <math><mtext>CO</mtext></math> , and <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> ) has an effect on COVID-19 admitted cases via Granger-cause. The Granger causation test shows that the concentration rate of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , temperature and wind speed) influences and predicts the COVID-19 admitted cases. The findings suggest that sulfur dioxide ( <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> ), <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , temperature, and wind speed induce an increase in COVID-19 admitted cases in the short term according to VECM analysis. The evidence of a positive long-run association between COVID-19 admitted cases and environmental air pollution might be shown in the cointegration test and the VECM. There is an affirmation that the usage of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , <math><mtext>CO</mtext></math> , and <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> ) has a significant impact on COVID-19-admitted cases' prediction and its explained about 24% of increasing COVID-19 admitted cases in Kuwait.</p>","PeriodicalId":29911,"journal":{"name":"Japanese Journal of Statistics and Data Science","volume":" ","pages":"379-406"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244511/pdf/","citationCount":"2","resultStr":"{\"title\":\"Exploring the impact of air pollution on COVID-19 admitted cases: Evidence from vector error correction model (VECM) approach in explaining the relationship between air pollutants towards COVID-19 cases in Kuwait.\",\"authors\":\"Ahmad R Alsaber, Parul Setiya, Ahmad T Al-Sultan, Jiazhu Pan\",\"doi\":\"10.1007/s42081-022-00165-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In urban areas, air pollution is one of the most serious global environmental issues. Using time-series approaches, this study looked into the validity of the relationship between air pollution and COVID-19 hospitalization. This time series research was carried out in the state of Kuwait; stationarity test, cointegration test, Granger causality and stability test, and test on multivariate time-series using the Vector Error Correction Model (VECM) technique. The findings reveal that the concentration rate of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , <math><mtext>CO</mtext></math> , and <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> ) has an effect on COVID-19 admitted cases via Granger-cause. The Granger causation test shows that the concentration rate of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , temperature and wind speed) influences and predicts the COVID-19 admitted cases. The findings suggest that sulfur dioxide ( <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> ), <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , temperature, and wind speed induce an increase in COVID-19 admitted cases in the short term according to VECM analysis. The evidence of a positive long-run association between COVID-19 admitted cases and environmental air pollution might be shown in the cointegration test and the VECM. There is an affirmation that the usage of air pollutants ( <math><msub><mtext>O</mtext> <mn>3</mn></msub> </math> , <math><msub><mtext>SO</mtext> <mn>2</mn></msub> </math> , <math><msub><mtext>NO</mtext> <mn>2</mn></msub> </math> , <math><mtext>CO</mtext></math> , and <math><msub><mtext>PM</mtext> <mn>10</mn></msub> </math> ) has a significant impact on COVID-19-admitted cases' prediction and its explained about 24% of increasing COVID-19 admitted cases in Kuwait.</p>\",\"PeriodicalId\":29911,\"journal\":{\"name\":\"Japanese Journal of Statistics and Data Science\",\"volume\":\" \",\"pages\":\"379-406\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9244511/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese Journal of Statistics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42081-022-00165-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Statistics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42081-022-00165-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Exploring the impact of air pollution on COVID-19 admitted cases: Evidence from vector error correction model (VECM) approach in explaining the relationship between air pollutants towards COVID-19 cases in Kuwait.
In urban areas, air pollution is one of the most serious global environmental issues. Using time-series approaches, this study looked into the validity of the relationship between air pollution and COVID-19 hospitalization. This time series research was carried out in the state of Kuwait; stationarity test, cointegration test, Granger causality and stability test, and test on multivariate time-series using the Vector Error Correction Model (VECM) technique. The findings reveal that the concentration rate of air pollutants ( , , , , and ) has an effect on COVID-19 admitted cases via Granger-cause. The Granger causation test shows that the concentration rate of air pollutants ( , , , temperature and wind speed) influences and predicts the COVID-19 admitted cases. The findings suggest that sulfur dioxide ( ), , temperature, and wind speed induce an increase in COVID-19 admitted cases in the short term according to VECM analysis. The evidence of a positive long-run association between COVID-19 admitted cases and environmental air pollution might be shown in the cointegration test and the VECM. There is an affirmation that the usage of air pollutants ( , , , , and ) has a significant impact on COVID-19-admitted cases' prediction and its explained about 24% of increasing COVID-19 admitted cases in Kuwait.