{"title":"与注射用头孢呋辛钠共给药对热毒宁注射液衍生7种植物化学物质和9种代谢物影响的大鼠药动学研究。","authors":"Qiulong Zhao, Chunxue Wang, Jiaxin Cheng, Hui Yan, Ling Wang, Dawei Qian, Jinao Duan","doi":"10.1155/2022/2565494","DOIUrl":null,"url":null,"abstract":"<p><p>According to the sixth edition of China's \"New Coronavirus Diagnosis and Treatment Plan (NCDTP),\" ReDuNing injection (RDN) was firstly introduced to treat severe and critical COVID-19, whereas its combination with broad-spectrum antibiotics was suggested to take with extreme caution and full reasons. Therefore, we aim to describe the pharmacokinetics of seven active phytochemicals and semiquantification of nine relevant metabolites in ReDuNing injection (RDN) after combining with cefuroxime sodium (CNa) for injection in rat plasma. Male Sprague-Dawley rats were randomly assigned to six groups, and they were intravenously administered, respectively, with different prescriptions of RDN (2 mL/kg) and CNa (225 mg/kg). At different time points (0.03, 0.08, 0.17, 0.24, 0.33, 0.50, 0.67, 1, and 6 h) after administration, the drug concentrations of iridoids glycosides, organic acids, and metabolites in rat plasma were determined using ultrahigh-pressure liquid chromatography coupled with linear ion rap-orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS), and main pharmacokinetic parameters were estimated by noncompartment model. The results showed that there were differences in pharmacokinetic parameters, AUC<sub>(0-t)</sub>, T<sub>1/2</sub>, <i>C</i> <sub>max</sub>, CL of iridoids glycosides, and organic acids, after the intravenous administration of the different combinations of RDN and CNa. Moreover, different combinations of the injections also resulted in different curves of relative changes of each metabolite. The obtained results suggested that RDN and CNa existed pharmacokinetic drug-herb interactions in rats. The findings not only lay the foundation for evaluating the safety of RDN injection combined with CNa but also make contributions to clinically applying RDN injection combined with CNa, which works potentially against severe forms of COVID-19.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"2565494"},"PeriodicalIF":4.6000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252753/pdf/","citationCount":"1","resultStr":"{\"title\":\"Pharmacokinetic Study of Coadministration with Cefuroxime Sodium for Injection Influencing ReDuNing Injection-Derived Seven Phytochemicals and Nine Metabolites in Rats.\",\"authors\":\"Qiulong Zhao, Chunxue Wang, Jiaxin Cheng, Hui Yan, Ling Wang, Dawei Qian, Jinao Duan\",\"doi\":\"10.1155/2022/2565494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>According to the sixth edition of China's \\\"New Coronavirus Diagnosis and Treatment Plan (NCDTP),\\\" ReDuNing injection (RDN) was firstly introduced to treat severe and critical COVID-19, whereas its combination with broad-spectrum antibiotics was suggested to take with extreme caution and full reasons. Therefore, we aim to describe the pharmacokinetics of seven active phytochemicals and semiquantification of nine relevant metabolites in ReDuNing injection (RDN) after combining with cefuroxime sodium (CNa) for injection in rat plasma. Male Sprague-Dawley rats were randomly assigned to six groups, and they were intravenously administered, respectively, with different prescriptions of RDN (2 mL/kg) and CNa (225 mg/kg). At different time points (0.03, 0.08, 0.17, 0.24, 0.33, 0.50, 0.67, 1, and 6 h) after administration, the drug concentrations of iridoids glycosides, organic acids, and metabolites in rat plasma were determined using ultrahigh-pressure liquid chromatography coupled with linear ion rap-orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS), and main pharmacokinetic parameters were estimated by noncompartment model. The results showed that there were differences in pharmacokinetic parameters, AUC<sub>(0-t)</sub>, T<sub>1/2</sub>, <i>C</i> <sub>max</sub>, CL of iridoids glycosides, and organic acids, after the intravenous administration of the different combinations of RDN and CNa. Moreover, different combinations of the injections also resulted in different curves of relative changes of each metabolite. The obtained results suggested that RDN and CNa existed pharmacokinetic drug-herb interactions in rats. The findings not only lay the foundation for evaluating the safety of RDN injection combined with CNa but also make contributions to clinically applying RDN injection combined with CNa, which works potentially against severe forms of COVID-19.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"2565494\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252753/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/2565494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/2565494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Pharmacokinetic Study of Coadministration with Cefuroxime Sodium for Injection Influencing ReDuNing Injection-Derived Seven Phytochemicals and Nine Metabolites in Rats.
According to the sixth edition of China's "New Coronavirus Diagnosis and Treatment Plan (NCDTP)," ReDuNing injection (RDN) was firstly introduced to treat severe and critical COVID-19, whereas its combination with broad-spectrum antibiotics was suggested to take with extreme caution and full reasons. Therefore, we aim to describe the pharmacokinetics of seven active phytochemicals and semiquantification of nine relevant metabolites in ReDuNing injection (RDN) after combining with cefuroxime sodium (CNa) for injection in rat plasma. Male Sprague-Dawley rats were randomly assigned to six groups, and they were intravenously administered, respectively, with different prescriptions of RDN (2 mL/kg) and CNa (225 mg/kg). At different time points (0.03, 0.08, 0.17, 0.24, 0.33, 0.50, 0.67, 1, and 6 h) after administration, the drug concentrations of iridoids glycosides, organic acids, and metabolites in rat plasma were determined using ultrahigh-pressure liquid chromatography coupled with linear ion rap-orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS), and main pharmacokinetic parameters were estimated by noncompartment model. The results showed that there were differences in pharmacokinetic parameters, AUC(0-t), T1/2, Cmax, CL of iridoids glycosides, and organic acids, after the intravenous administration of the different combinations of RDN and CNa. Moreover, different combinations of the injections also resulted in different curves of relative changes of each metabolite. The obtained results suggested that RDN and CNa existed pharmacokinetic drug-herb interactions in rats. The findings not only lay the foundation for evaluating the safety of RDN injection combined with CNa but also make contributions to clinically applying RDN injection combined with CNa, which works potentially against severe forms of COVID-19.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.