{"title":"在联合胁迫下,通过蛋白质组分析ΔHik28揭示了依赖hik28和不依赖hik28的ABC转运蛋白。","authors":"Pavinee Kurdrid, Rayakorn Yutthanasirikul, Sirilak Saree, Jittisak Senachak, Monpaveekorn Saelee, Apiradee Hongsthong","doi":"10.1186/s12860-022-00421-w","DOIUrl":null,"url":null,"abstract":"<p><p>Synechocystis histidine kinase, Sll0474: Hik28, a signal protein in a two-component signal transduction system, plays a critical role in responding to a decrease in growth temperature and is also involved in nitrogen metabolism. In the present study, under combined stress from non-optimal growth temperature and nitrogen depletion, a comparative proteomic analysis of the wild type (WT) and a deletion mutant (MT) of Synechocystis histidine kinase, Sll0474: Hik28, in a two-component signal transduction system identified the specific groups of ABC transporters that were Hik28-dependent, e.g., the iron transporter, and Hik28-independent, e.g., the phosphate transporter. The iron transporter, AfuA, was found to be upregulated only in the WT strain grown under the combined stress of high temperature and nitrogen depletion. Whereas, the expression level of the phosphate transporter, PstS, was increased in both the WT and MT strains. Moreover, the location in the genome of the genes encoding Hik28 and ABC transporters in Synechocystis sp. PCC6803 were analyzed in parallel with the comparative proteomic data. The results suggested the regulation of the ABC transporters by the gene in a two-component system located in an adjacent location in the genome.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258054/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hik28-dependent and Hik28-independent ABC transporters were revealed by proteome-wide analysis of ΔHik28 under combined stress.\",\"authors\":\"Pavinee Kurdrid, Rayakorn Yutthanasirikul, Sirilak Saree, Jittisak Senachak, Monpaveekorn Saelee, Apiradee Hongsthong\",\"doi\":\"10.1186/s12860-022-00421-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synechocystis histidine kinase, Sll0474: Hik28, a signal protein in a two-component signal transduction system, plays a critical role in responding to a decrease in growth temperature and is also involved in nitrogen metabolism. In the present study, under combined stress from non-optimal growth temperature and nitrogen depletion, a comparative proteomic analysis of the wild type (WT) and a deletion mutant (MT) of Synechocystis histidine kinase, Sll0474: Hik28, in a two-component signal transduction system identified the specific groups of ABC transporters that were Hik28-dependent, e.g., the iron transporter, and Hik28-independent, e.g., the phosphate transporter. The iron transporter, AfuA, was found to be upregulated only in the WT strain grown under the combined stress of high temperature and nitrogen depletion. Whereas, the expression level of the phosphate transporter, PstS, was increased in both the WT and MT strains. Moreover, the location in the genome of the genes encoding Hik28 and ABC transporters in Synechocystis sp. PCC6803 were analyzed in parallel with the comparative proteomic data. The results suggested the regulation of the ABC transporters by the gene in a two-component system located in an adjacent location in the genome.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258054/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12860-022-00421-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12860-022-00421-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Hik28-dependent and Hik28-independent ABC transporters were revealed by proteome-wide analysis of ΔHik28 under combined stress.
Synechocystis histidine kinase, Sll0474: Hik28, a signal protein in a two-component signal transduction system, plays a critical role in responding to a decrease in growth temperature and is also involved in nitrogen metabolism. In the present study, under combined stress from non-optimal growth temperature and nitrogen depletion, a comparative proteomic analysis of the wild type (WT) and a deletion mutant (MT) of Synechocystis histidine kinase, Sll0474: Hik28, in a two-component signal transduction system identified the specific groups of ABC transporters that were Hik28-dependent, e.g., the iron transporter, and Hik28-independent, e.g., the phosphate transporter. The iron transporter, AfuA, was found to be upregulated only in the WT strain grown under the combined stress of high temperature and nitrogen depletion. Whereas, the expression level of the phosphate transporter, PstS, was increased in both the WT and MT strains. Moreover, the location in the genome of the genes encoding Hik28 and ABC transporters in Synechocystis sp. PCC6803 were analyzed in parallel with the comparative proteomic data. The results suggested the regulation of the ABC transporters by the gene in a two-component system located in an adjacent location in the genome.