{"title":"利用文本信息进行假新闻检测。","authors":"Dimitrios Panagiotis Kasseropoulos, Paraskevas Koukaras, Christos Tjortjis","doi":"10.1142/S0129065722500587","DOIUrl":null,"url":null,"abstract":"<p><p>\"Fake news\" refers to the deliberate dissemination of news with the purpose to deceive and mislead the public. This paper assesses the accuracy of several Machine Learning (ML) algorithms, using a style-based technique that relies on textual information extracted from news, such as part of speech counts. To expand the already proposed styled-based techniques, a new method of enhancing a linguistic feature set is proposed. It combines Named Entity Recognition (NER) with the Frequent Pattern (FP) Growth association rule mining algorithm, aiming to provide better insight into the papers' sentence level structure. Recursive feature elimination was used to identify a subset of the highest performing linguistic characteristics, which turned out to align with the literature. Using pre-trained word embeddings, document embeddings and weighted document embeddings were constructed using each word's TF-IDF value as the weight factor. The document embeddings were mixed with the linguistic features providing a variety of training/test feature sets. For each model, the best performing feature set was identified and fine-tuned regarding its hyper parameters to improve accuracy. ML algorithms' results were compared with two Neural Networks: Convolutional Neural Network (CNN) and Long-Short-Term Memory (LSTM). The results indicate that CNN outperformed all other methods in terms of accuracy, when companied with pre-trained word embeddings, yet SVM performs almost the same with a wider variety of input feature sets. Although style-based technique scores lower accuracy, it provides explainable results about the author's writing style decisions. Our work points out how new technologies and combinations of existing techniques can enhance the style-based approach capturing more information.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Textual Information for Fake News Detection.\",\"authors\":\"Dimitrios Panagiotis Kasseropoulos, Paraskevas Koukaras, Christos Tjortjis\",\"doi\":\"10.1142/S0129065722500587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\\"Fake news\\\" refers to the deliberate dissemination of news with the purpose to deceive and mislead the public. This paper assesses the accuracy of several Machine Learning (ML) algorithms, using a style-based technique that relies on textual information extracted from news, such as part of speech counts. To expand the already proposed styled-based techniques, a new method of enhancing a linguistic feature set is proposed. It combines Named Entity Recognition (NER) with the Frequent Pattern (FP) Growth association rule mining algorithm, aiming to provide better insight into the papers' sentence level structure. Recursive feature elimination was used to identify a subset of the highest performing linguistic characteristics, which turned out to align with the literature. Using pre-trained word embeddings, document embeddings and weighted document embeddings were constructed using each word's TF-IDF value as the weight factor. The document embeddings were mixed with the linguistic features providing a variety of training/test feature sets. For each model, the best performing feature set was identified and fine-tuned regarding its hyper parameters to improve accuracy. ML algorithms' results were compared with two Neural Networks: Convolutional Neural Network (CNN) and Long-Short-Term Memory (LSTM). The results indicate that CNN outperformed all other methods in terms of accuracy, when companied with pre-trained word embeddings, yet SVM performs almost the same with a wider variety of input feature sets. Although style-based technique scores lower accuracy, it provides explainable results about the author's writing style decisions. Our work points out how new technologies and combinations of existing techniques can enhance the style-based approach capturing more information.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065722500587\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065722500587","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Exploiting Textual Information for Fake News Detection.
"Fake news" refers to the deliberate dissemination of news with the purpose to deceive and mislead the public. This paper assesses the accuracy of several Machine Learning (ML) algorithms, using a style-based technique that relies on textual information extracted from news, such as part of speech counts. To expand the already proposed styled-based techniques, a new method of enhancing a linguistic feature set is proposed. It combines Named Entity Recognition (NER) with the Frequent Pattern (FP) Growth association rule mining algorithm, aiming to provide better insight into the papers' sentence level structure. Recursive feature elimination was used to identify a subset of the highest performing linguistic characteristics, which turned out to align with the literature. Using pre-trained word embeddings, document embeddings and weighted document embeddings were constructed using each word's TF-IDF value as the weight factor. The document embeddings were mixed with the linguistic features providing a variety of training/test feature sets. For each model, the best performing feature set was identified and fine-tuned regarding its hyper parameters to improve accuracy. ML algorithms' results were compared with two Neural Networks: Convolutional Neural Network (CNN) and Long-Short-Term Memory (LSTM). The results indicate that CNN outperformed all other methods in terms of accuracy, when companied with pre-trained word embeddings, yet SVM performs almost the same with a wider variety of input feature sets. Although style-based technique scores lower accuracy, it provides explainable results about the author's writing style decisions. Our work points out how new technologies and combinations of existing techniques can enhance the style-based approach capturing more information.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.