{"title":"成分控制软水凝胶面层尺寸和接触力学。","authors":"Christopher L Johnson, Alison C Dunn","doi":"10.1116/6.0002047","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels are soft hydrated polymer networks that are widely used in research and industry due to their favorable properties and similarity to biological tissues. However, it has long been difficult to create a hydrogel emulating the heterogeneous structure of special tissues, such as cartilage. One potential avenue to develop a structural variation in a hydrogel is the \"mold effect,\" which has only recently been discovered to be caused by absorbed oxygen within the mold surface interfering with the polymerization. This induces a dilute gradient-density surface layer with altered properties. However, the precise structure of the gradient-surface layer and its contact response have not yet been characterized. Such knowledge would prove useful for designs of composite hydrogels with altered surface characteristics. To fully characterize the hydrogel gradient-surface layer, we created five hydrogel compositions of varying monomer and cross-linker content to encompass variations in the layer. Then, we used particle exclusion microscopy during indentation and creep experiments to probe the contact response of the gradient layer of each composition. These experiments showed that the dilute structure of the gradient layer follows evolving contact behavior allowing poroelastic squeeze-out at miniscule pressures. Stiffer compositions had thinner gradient layers. This knowledge can potentially be used to create hydrogels with a stiff load-bearing bulk with altered surface characteristics tailored for specific tribological applications.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Composition controls soft hydrogel surface layer dimensions and contact mechanics.\",\"authors\":\"Christopher L Johnson, Alison C Dunn\",\"doi\":\"10.1116/6.0002047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels are soft hydrated polymer networks that are widely used in research and industry due to their favorable properties and similarity to biological tissues. However, it has long been difficult to create a hydrogel emulating the heterogeneous structure of special tissues, such as cartilage. One potential avenue to develop a structural variation in a hydrogel is the \\\"mold effect,\\\" which has only recently been discovered to be caused by absorbed oxygen within the mold surface interfering with the polymerization. This induces a dilute gradient-density surface layer with altered properties. However, the precise structure of the gradient-surface layer and its contact response have not yet been characterized. Such knowledge would prove useful for designs of composite hydrogels with altered surface characteristics. To fully characterize the hydrogel gradient-surface layer, we created five hydrogel compositions of varying monomer and cross-linker content to encompass variations in the layer. Then, we used particle exclusion microscopy during indentation and creep experiments to probe the contact response of the gradient layer of each composition. These experiments showed that the dilute structure of the gradient layer follows evolving contact behavior allowing poroelastic squeeze-out at miniscule pressures. Stiffer compositions had thinner gradient layers. This knowledge can potentially be used to create hydrogels with a stiff load-bearing bulk with altered surface characteristics tailored for specific tribological applications.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002047\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Composition controls soft hydrogel surface layer dimensions and contact mechanics.
Hydrogels are soft hydrated polymer networks that are widely used in research and industry due to their favorable properties and similarity to biological tissues. However, it has long been difficult to create a hydrogel emulating the heterogeneous structure of special tissues, such as cartilage. One potential avenue to develop a structural variation in a hydrogel is the "mold effect," which has only recently been discovered to be caused by absorbed oxygen within the mold surface interfering with the polymerization. This induces a dilute gradient-density surface layer with altered properties. However, the precise structure of the gradient-surface layer and its contact response have not yet been characterized. Such knowledge would prove useful for designs of composite hydrogels with altered surface characteristics. To fully characterize the hydrogel gradient-surface layer, we created five hydrogel compositions of varying monomer and cross-linker content to encompass variations in the layer. Then, we used particle exclusion microscopy during indentation and creep experiments to probe the contact response of the gradient layer of each composition. These experiments showed that the dilute structure of the gradient layer follows evolving contact behavior allowing poroelastic squeeze-out at miniscule pressures. Stiffer compositions had thinner gradient layers. This knowledge can potentially be used to create hydrogels with a stiff load-bearing bulk with altered surface characteristics tailored for specific tribological applications.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.