成分控制软水凝胶面层尺寸和接触力学。

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2022-11-07 DOI:10.1116/6.0002047
Christopher L Johnson, Alison C Dunn
{"title":"成分控制软水凝胶面层尺寸和接触力学。","authors":"Christopher L Johnson,&nbsp;Alison C Dunn","doi":"10.1116/6.0002047","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels are soft hydrated polymer networks that are widely used in research and industry due to their favorable properties and similarity to biological tissues. However, it has long been difficult to create a hydrogel emulating the heterogeneous structure of special tissues, such as cartilage. One potential avenue to develop a structural variation in a hydrogel is the \"mold effect,\" which has only recently been discovered to be caused by absorbed oxygen within the mold surface interfering with the polymerization. This induces a dilute gradient-density surface layer with altered properties. However, the precise structure of the gradient-surface layer and its contact response have not yet been characterized. Such knowledge would prove useful for designs of composite hydrogels with altered surface characteristics. To fully characterize the hydrogel gradient-surface layer, we created five hydrogel compositions of varying monomer and cross-linker content to encompass variations in the layer. Then, we used particle exclusion microscopy during indentation and creep experiments to probe the contact response of the gradient layer of each composition. These experiments showed that the dilute structure of the gradient layer follows evolving contact behavior allowing poroelastic squeeze-out at miniscule pressures. Stiffer compositions had thinner gradient layers. This knowledge can potentially be used to create hydrogels with a stiff load-bearing bulk with altered surface characteristics tailored for specific tribological applications.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Composition controls soft hydrogel surface layer dimensions and contact mechanics.\",\"authors\":\"Christopher L Johnson,&nbsp;Alison C Dunn\",\"doi\":\"10.1116/6.0002047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels are soft hydrated polymer networks that are widely used in research and industry due to their favorable properties and similarity to biological tissues. However, it has long been difficult to create a hydrogel emulating the heterogeneous structure of special tissues, such as cartilage. One potential avenue to develop a structural variation in a hydrogel is the \\\"mold effect,\\\" which has only recently been discovered to be caused by absorbed oxygen within the mold surface interfering with the polymerization. This induces a dilute gradient-density surface layer with altered properties. However, the precise structure of the gradient-surface layer and its contact response have not yet been characterized. Such knowledge would prove useful for designs of composite hydrogels with altered surface characteristics. To fully characterize the hydrogel gradient-surface layer, we created five hydrogel compositions of varying monomer and cross-linker content to encompass variations in the layer. Then, we used particle exclusion microscopy during indentation and creep experiments to probe the contact response of the gradient layer of each composition. These experiments showed that the dilute structure of the gradient layer follows evolving contact behavior allowing poroelastic squeeze-out at miniscule pressures. Stiffer compositions had thinner gradient layers. This knowledge can potentially be used to create hydrogels with a stiff load-bearing bulk with altered surface characteristics tailored for specific tribological applications.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002047\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

水凝胶是一种柔软的水合聚合物网络,由于其良好的性质和与生物组织的相似性而广泛应用于研究和工业。然而,长期以来,很难制造出一种模拟特殊组织(如软骨)异质结构的水凝胶。在水凝胶中发展结构变化的一个潜在途径是“霉菌效应”,这是最近才发现的,是由霉菌表面吸收的氧气干扰聚合引起的。这就产生了一个性质改变的稀释梯度密度表面层。然而,梯度面层的精确结构及其接触响应尚未被表征。这些知识将证明对改变表面特征的复合水凝胶的设计是有用的。为了充分表征水凝胶梯度表面层,我们创建了五种不同单体和交联剂含量的水凝胶组成,以涵盖层中的变化。然后,我们在压痕和蠕变实验中使用颗粒排斥显微镜来探测每种成分的梯度层的接触响应。这些实验表明,梯度层的稀释结构遵循不断发展的接触行为,允许在微小压力下进行孔隙弹性挤压。较硬的成分有较薄的梯度层。这些知识可以潜在地用于制造具有刚性承载体的水凝胶,并根据特定的摩擦学应用改变表面特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composition controls soft hydrogel surface layer dimensions and contact mechanics.

Hydrogels are soft hydrated polymer networks that are widely used in research and industry due to their favorable properties and similarity to biological tissues. However, it has long been difficult to create a hydrogel emulating the heterogeneous structure of special tissues, such as cartilage. One potential avenue to develop a structural variation in a hydrogel is the "mold effect," which has only recently been discovered to be caused by absorbed oxygen within the mold surface interfering with the polymerization. This induces a dilute gradient-density surface layer with altered properties. However, the precise structure of the gradient-surface layer and its contact response have not yet been characterized. Such knowledge would prove useful for designs of composite hydrogels with altered surface characteristics. To fully characterize the hydrogel gradient-surface layer, we created five hydrogel compositions of varying monomer and cross-linker content to encompass variations in the layer. Then, we used particle exclusion microscopy during indentation and creep experiments to probe the contact response of the gradient layer of each composition. These experiments showed that the dilute structure of the gradient layer follows evolving contact behavior allowing poroelastic squeeze-out at miniscule pressures. Stiffer compositions had thinner gradient layers. This knowledge can potentially be used to create hydrogels with a stiff load-bearing bulk with altered surface characteristics tailored for specific tribological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信