{"title":"非相互作用系统中的轨迹相变:全对全动力学和随机能量模型。","authors":"Juan P Garrahan, Chokri Manai, Simone Warzel","doi":"10.1098/rsta.2021.0415","DOIUrl":null,"url":null,"abstract":"<p><p>We study the fluctuations of time-additive random observables in the stochastic dynamics of a system of [Formula: see text] non-interacting Ising spins. We mainly consider the case of all-to-all dynamics where transitions are possible between any two spin configurations with uniform rates. We show that the cumulant generating function of the time-integral of a normally distributed quenched random function of configurations, i.e. the energy function of the random energy model (REM), has a phase transition in the large [Formula: see text] limit for trajectories of any time extent. We prove this by determining the exact limit of the scaled cumulant generating function. This is accomplished by connecting the dynamical problem to a spectral analysis of the all-to-all quantum REM. We also discuss finite [Formula: see text] corrections as observed in numerical simulations. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210415"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trajectory phase transitions in non-interacting systems: all-to-all dynamics and the random energy model.\",\"authors\":\"Juan P Garrahan, Chokri Manai, Simone Warzel\",\"doi\":\"10.1098/rsta.2021.0415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the fluctuations of time-additive random observables in the stochastic dynamics of a system of [Formula: see text] non-interacting Ising spins. We mainly consider the case of all-to-all dynamics where transitions are possible between any two spin configurations with uniform rates. We show that the cumulant generating function of the time-integral of a normally distributed quenched random function of configurations, i.e. the energy function of the random energy model (REM), has a phase transition in the large [Formula: see text] limit for trajectories of any time extent. We prove this by determining the exact limit of the scaled cumulant generating function. This is accomplished by connecting the dynamical problem to a spectral analysis of the all-to-all quantum REM. We also discuss finite [Formula: see text] corrections as observed in numerical simulations. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.</p>\",\"PeriodicalId\":286094,\"journal\":{\"name\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"volume\":\" \",\"pages\":\"20210415\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Trajectory phase transitions in non-interacting systems: all-to-all dynamics and the random energy model.
We study the fluctuations of time-additive random observables in the stochastic dynamics of a system of [Formula: see text] non-interacting Ising spins. We mainly consider the case of all-to-all dynamics where transitions are possible between any two spin configurations with uniform rates. We show that the cumulant generating function of the time-integral of a normally distributed quenched random function of configurations, i.e. the energy function of the random energy model (REM), has a phase transition in the large [Formula: see text] limit for trajectories of any time extent. We prove this by determining the exact limit of the scaled cumulant generating function. This is accomplished by connecting the dynamical problem to a spectral analysis of the all-to-all quantum REM. We also discuss finite [Formula: see text] corrections as observed in numerical simulations. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.