{"title":"使用体验式学习模式教授临床推理理论和认知偏见:对一年级医学生课程的评估。","authors":"Justin J Choi, Jeanie Gribben, Myriam Lin, Erika L Abramson, Juliet Aizer","doi":"10.1080/10872981.2022.2153782","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Most medical students entering clerkships have limited understanding of clinical reasoning concepts. The value of teaching theories of clinical reasoning and cognitive biases to first-year medical students is unknown. This study aimed to evaluate the value of explicitly teaching clinical reasoning theory and cognitive bias to first-year medical students.</p><p><strong>Methods: </strong>Using Kolb's experiential learning model, we introduced dual process theory, script theory, and cognitive biases in teaching clinical reasoning to first-year medical students at an academic medical center in New York City between January and June 2020. Due to the COVID-19 pandemic, instruction was transitioned to a distance learning format in March 2020. The curriculum included a series of written clinical reasoning examinations with facilitated small group discussions. Written self-assessments prompted each student to reflect on the experience, draw conclusions about their clinical reasoning, and plan for future encounters involving clinical reasoning. We evaluated the value of the curriculum using mixed-methods to analyze faculty assessments, student self-assessment questionnaires, and an end-of-curriculum anonymous questionnaire eliciting student feedback.</p><p><strong>Results: </strong>Among 318 total examinations of 106 students, 254 (80%) had a complete problem representation, while 199 (63%) of problem representations were considered concise. The most common cognitive biases described by students in their clinical reasoning were anchoring bias, availability bias, and premature closure. Four major themes emerged as valuable outcomes of the CREs as identified by students: (1) synthesis of medical knowledge; (2) enhanced ability to generate differential diagnoses; (3) development of self-efficacy related to clinical reasoning; (4) raised awareness of personal cognitive biases.</p><p><strong>Conclusions: </strong>We found that explicitly teaching clinical reasoning theory and cognitive biases using an experiential learning model provides first-year medical students with valuable opportunities for developing knowledge, skills, and self-efficacy related to clinical reasoning.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"2153782"},"PeriodicalIF":4.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718553/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using an experiential learning model to teach clinical reasoning theory and cognitive bias: an evaluation of a first-year medical student curriculum.\",\"authors\":\"Justin J Choi, Jeanie Gribben, Myriam Lin, Erika L Abramson, Juliet Aizer\",\"doi\":\"10.1080/10872981.2022.2153782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Most medical students entering clerkships have limited understanding of clinical reasoning concepts. The value of teaching theories of clinical reasoning and cognitive biases to first-year medical students is unknown. This study aimed to evaluate the value of explicitly teaching clinical reasoning theory and cognitive bias to first-year medical students.</p><p><strong>Methods: </strong>Using Kolb's experiential learning model, we introduced dual process theory, script theory, and cognitive biases in teaching clinical reasoning to first-year medical students at an academic medical center in New York City between January and June 2020. Due to the COVID-19 pandemic, instruction was transitioned to a distance learning format in March 2020. The curriculum included a series of written clinical reasoning examinations with facilitated small group discussions. Written self-assessments prompted each student to reflect on the experience, draw conclusions about their clinical reasoning, and plan for future encounters involving clinical reasoning. We evaluated the value of the curriculum using mixed-methods to analyze faculty assessments, student self-assessment questionnaires, and an end-of-curriculum anonymous questionnaire eliciting student feedback.</p><p><strong>Results: </strong>Among 318 total examinations of 106 students, 254 (80%) had a complete problem representation, while 199 (63%) of problem representations were considered concise. The most common cognitive biases described by students in their clinical reasoning were anchoring bias, availability bias, and premature closure. Four major themes emerged as valuable outcomes of the CREs as identified by students: (1) synthesis of medical knowledge; (2) enhanced ability to generate differential diagnoses; (3) development of self-efficacy related to clinical reasoning; (4) raised awareness of personal cognitive biases.</p><p><strong>Conclusions: </strong>We found that explicitly teaching clinical reasoning theory and cognitive biases using an experiential learning model provides first-year medical students with valuable opportunities for developing knowledge, skills, and self-efficacy related to clinical reasoning.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\" \",\"pages\":\"2153782\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718553/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10872981.2022.2153782\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10872981.2022.2153782","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Using an experiential learning model to teach clinical reasoning theory and cognitive bias: an evaluation of a first-year medical student curriculum.
Background: Most medical students entering clerkships have limited understanding of clinical reasoning concepts. The value of teaching theories of clinical reasoning and cognitive biases to first-year medical students is unknown. This study aimed to evaluate the value of explicitly teaching clinical reasoning theory and cognitive bias to first-year medical students.
Methods: Using Kolb's experiential learning model, we introduced dual process theory, script theory, and cognitive biases in teaching clinical reasoning to first-year medical students at an academic medical center in New York City between January and June 2020. Due to the COVID-19 pandemic, instruction was transitioned to a distance learning format in March 2020. The curriculum included a series of written clinical reasoning examinations with facilitated small group discussions. Written self-assessments prompted each student to reflect on the experience, draw conclusions about their clinical reasoning, and plan for future encounters involving clinical reasoning. We evaluated the value of the curriculum using mixed-methods to analyze faculty assessments, student self-assessment questionnaires, and an end-of-curriculum anonymous questionnaire eliciting student feedback.
Results: Among 318 total examinations of 106 students, 254 (80%) had a complete problem representation, while 199 (63%) of problem representations were considered concise. The most common cognitive biases described by students in their clinical reasoning were anchoring bias, availability bias, and premature closure. Four major themes emerged as valuable outcomes of the CREs as identified by students: (1) synthesis of medical knowledge; (2) enhanced ability to generate differential diagnoses; (3) development of self-efficacy related to clinical reasoning; (4) raised awareness of personal cognitive biases.
Conclusions: We found that explicitly teaching clinical reasoning theory and cognitive biases using an experiential learning model provides first-year medical students with valuable opportunities for developing knowledge, skills, and self-efficacy related to clinical reasoning.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico