{"title":"来自骨髓间充质干细胞的外泌体通过上调乳腺癌细胞中蛋白相关蛋白/ PDZ结合基序的转录共激活因子的表达来促进增殖和迁移。","authors":"Wanming Wu, Renfeng Huang, Linyang Ou, Ruiwen Lei","doi":"10.4103/0304-4920.359800","DOIUrl":null,"url":null,"abstract":"<p><p>Bone marrow mesenchymal stem cells (BM-MSCs), with the properties of self-renewal and pluripotency, can migrate to the tumor sites and exert complex effects on tumor progression and communications by releasing exosomes. However, to our knowledge, only a few studies have reported the effects of BM-MSCs exosomes on breast cancer cells development. Here, utilizing exosomes isolated from in vitro BM-MSCs, we systematically investigated this issue in a breast cancer cell line. In this study, we found that BM-MSCs exosomes are actively incorporated by breast cancer cell MDA-MB-231 cells and subsequently promote MDA-MB-231 cells proliferation and migration. Mechanistically, we further found Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) which are Hippo signaling components were involved in this promoting progress. Consistently, YAP and TAZ knockdown could significantly reverse breast cancer cells proliferation and migration improved by BM-MSCs exosomes. Taken together, our findings demonstrated a new mechanism through which BM-MSCs-derived exosomes may contribute to breast cancer cells proliferation and migration, which might provide an evidence for novel drug discovery based on exosomes and Hippo signaling.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exosomes derived from bone marrow mesenchymal stem cells promote proliferation and migration via upregulation yes-associated protein/transcriptional coactivator with PDZ binding motif expression in breast cancer cells.\",\"authors\":\"Wanming Wu, Renfeng Huang, Linyang Ou, Ruiwen Lei\",\"doi\":\"10.4103/0304-4920.359800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone marrow mesenchymal stem cells (BM-MSCs), with the properties of self-renewal and pluripotency, can migrate to the tumor sites and exert complex effects on tumor progression and communications by releasing exosomes. However, to our knowledge, only a few studies have reported the effects of BM-MSCs exosomes on breast cancer cells development. Here, utilizing exosomes isolated from in vitro BM-MSCs, we systematically investigated this issue in a breast cancer cell line. In this study, we found that BM-MSCs exosomes are actively incorporated by breast cancer cell MDA-MB-231 cells and subsequently promote MDA-MB-231 cells proliferation and migration. Mechanistically, we further found Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) which are Hippo signaling components were involved in this promoting progress. Consistently, YAP and TAZ knockdown could significantly reverse breast cancer cells proliferation and migration improved by BM-MSCs exosomes. Taken together, our findings demonstrated a new mechanism through which BM-MSCs-derived exosomes may contribute to breast cancer cells proliferation and migration, which might provide an evidence for novel drug discovery based on exosomes and Hippo signaling.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/0304-4920.359800\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0304-4920.359800","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exosomes derived from bone marrow mesenchymal stem cells promote proliferation and migration via upregulation yes-associated protein/transcriptional coactivator with PDZ binding motif expression in breast cancer cells.
Bone marrow mesenchymal stem cells (BM-MSCs), with the properties of self-renewal and pluripotency, can migrate to the tumor sites and exert complex effects on tumor progression and communications by releasing exosomes. However, to our knowledge, only a few studies have reported the effects of BM-MSCs exosomes on breast cancer cells development. Here, utilizing exosomes isolated from in vitro BM-MSCs, we systematically investigated this issue in a breast cancer cell line. In this study, we found that BM-MSCs exosomes are actively incorporated by breast cancer cell MDA-MB-231 cells and subsequently promote MDA-MB-231 cells proliferation and migration. Mechanistically, we further found Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) which are Hippo signaling components were involved in this promoting progress. Consistently, YAP and TAZ knockdown could significantly reverse breast cancer cells proliferation and migration improved by BM-MSCs exosomes. Taken together, our findings demonstrated a new mechanism through which BM-MSCs-derived exosomes may contribute to breast cancer cells proliferation and migration, which might provide an evidence for novel drug discovery based on exosomes and Hippo signaling.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.