导热聚合物复合材料的发展与展望。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2022-10-12 DOI:10.3390/nano12203574
Jiaqi Wang, Lin Hu, Wenhao Li, Yuge Ouyang, Liuyang Bai
{"title":"导热聚合物复合材料的发展与展望。","authors":"Jiaqi Wang,&nbsp;Lin Hu,&nbsp;Wenhao Li,&nbsp;Yuge Ouyang,&nbsp;Liuyang Bai","doi":"10.3390/nano12203574","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of electronic appliances and electronic equipment towards miniaturization, lightweight and high-power density, the heat generated and accumulated by devices during high-speed operation seriously reduces the working efficiency and service life of the equipment. The key to solving this problem is to develop high-performance thermal management materials and improve the heat dissipation efficiency of the equipment. This paper mainly summarizes the research progress of polymer composites with high thermal conductivity and electrical insulation, including the thermal conductivity mechanism of composites, the factors affecting the thermal conductivity of composites, and the research status of thermally conductive and electrical insulation polymer composites in recent years. Finally, we look forward to the research focus and urgent problems that should be addressed of high-performance thermal conductive composites, which will provide strategies for further development and application of advanced thermal and electrical insulation composites.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611299/pdf/","citationCount":"3","resultStr":"{\"title\":\"Development and Perspectives of Thermal Conductive Polymer Composites.\",\"authors\":\"Jiaqi Wang,&nbsp;Lin Hu,&nbsp;Wenhao Li,&nbsp;Yuge Ouyang,&nbsp;Liuyang Bai\",\"doi\":\"10.3390/nano12203574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the development of electronic appliances and electronic equipment towards miniaturization, lightweight and high-power density, the heat generated and accumulated by devices during high-speed operation seriously reduces the working efficiency and service life of the equipment. The key to solving this problem is to develop high-performance thermal management materials and improve the heat dissipation efficiency of the equipment. This paper mainly summarizes the research progress of polymer composites with high thermal conductivity and electrical insulation, including the thermal conductivity mechanism of composites, the factors affecting the thermal conductivity of composites, and the research status of thermally conductive and electrical insulation polymer composites in recent years. Finally, we look forward to the research focus and urgent problems that should be addressed of high-performance thermal conductive composites, which will provide strategies for further development and application of advanced thermal and electrical insulation composites.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611299/pdf/\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano12203574\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano12203574","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

随着电子电器、电子设备向小型化、轻量化、高功率密度方向发展,设备在高速运行过程中产生和积累的热量严重降低了设备的工作效率和使用寿命。解决这一问题的关键是开发高性能热管理材料,提高设备的散热效率。本文主要综述了高导热和电绝缘聚合物复合材料的研究进展,包括复合材料的导热机理、影响复合材料导热性能的因素以及近年来导热和电绝缘聚合物复合材料的研究现状。最后,展望了高性能导热复合材料的研究重点和亟待解决的问题,为进一步开发和应用先进的热电绝缘复合材料提供策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development and Perspectives of Thermal Conductive Polymer Composites.

Development and Perspectives of Thermal Conductive Polymer Composites.

Development and Perspectives of Thermal Conductive Polymer Composites.

Development and Perspectives of Thermal Conductive Polymer Composites.

With the development of electronic appliances and electronic equipment towards miniaturization, lightweight and high-power density, the heat generated and accumulated by devices during high-speed operation seriously reduces the working efficiency and service life of the equipment. The key to solving this problem is to develop high-performance thermal management materials and improve the heat dissipation efficiency of the equipment. This paper mainly summarizes the research progress of polymer composites with high thermal conductivity and electrical insulation, including the thermal conductivity mechanism of composites, the factors affecting the thermal conductivity of composites, and the research status of thermally conductive and electrical insulation polymer composites in recent years. Finally, we look forward to the research focus and urgent problems that should be addressed of high-performance thermal conductive composites, which will provide strategies for further development and application of advanced thermal and electrical insulation composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信