基于概率阻尼模型的虚拟现实音频材料重建。

IF 6.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Auston Sterling, Nicholas Rewkowski, Roberta L Klatzky, Ming C Lin
{"title":"基于概率阻尼模型的虚拟现实音频材料重建。","authors":"Auston Sterling,&nbsp;Nicholas Rewkowski,&nbsp;Roberta L Klatzky,&nbsp;Ming C Lin","doi":"10.1109/TVCG.2019.2898822","DOIUrl":null,"url":null,"abstract":"<p><p>Modal sound synthesis has been used to create realistic sounds from rigid-body objects, but requires accurate real-world material parameters. These material parameters can be estimated from recorded sounds of an impacted object, but external factors can interfere with accurate parameter estimation. We present a novel technique for estimating the damping parameters of materials from recorded impact sounds that probabilistically models these external factors. We represent the combined effects of material damping, support damping, and sampling inaccuracies with a probabilistic generative model, then use maximum likelihood estimation to fit a damping model to recorded data. This technique greatly reduces the human effort needed and does not require the precise object geometry or the exact hit location. We validate the effectiveness of this technique with a comprehensive analysis of a synthetic dataset and a perceptual study on object identification. We also present a study establishing human performance on the same parameter estimation task for comparison.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"1855-1864"},"PeriodicalIF":6.5000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2019.2898822","citationCount":"11","resultStr":"{\"title\":\"Audio-Material Reconstruction for Virtualized Reality Using a Probabilistic Damping Model.\",\"authors\":\"Auston Sterling,&nbsp;Nicholas Rewkowski,&nbsp;Roberta L Klatzky,&nbsp;Ming C Lin\",\"doi\":\"10.1109/TVCG.2019.2898822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modal sound synthesis has been used to create realistic sounds from rigid-body objects, but requires accurate real-world material parameters. These material parameters can be estimated from recorded sounds of an impacted object, but external factors can interfere with accurate parameter estimation. We present a novel technique for estimating the damping parameters of materials from recorded impact sounds that probabilistically models these external factors. We represent the combined effects of material damping, support damping, and sampling inaccuracies with a probabilistic generative model, then use maximum likelihood estimation to fit a damping model to recorded data. This technique greatly reduces the human effort needed and does not require the precise object geometry or the exact hit location. We validate the effectiveness of this technique with a comprehensive analysis of a synthetic dataset and a perceptual study on object identification. We also present a study establishing human performance on the same parameter estimation task for comparison.</p>\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\" \",\"pages\":\"1855-1864\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TVCG.2019.2898822\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2019.2898822\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2019.2898822","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 11

摘要

模态声音合成已被用于从刚体物体中创建逼真的声音,但需要准确的真实世界材料参数。这些材料参数可以从被撞击物体的记录声音中估计出来,但外部因素可能会干扰准确的参数估计。我们提出了一种从记录的冲击声中估计材料阻尼参数的新技术,该技术可以对这些外部因素进行概率建模。我们用概率生成模型来表示材料阻尼、支撑阻尼和采样不准确性的综合影响,然后使用最大似然估计来拟合记录数据的阻尼模型。这种技术大大减少了所需的人力,并且不需要精确的物体几何形状或精确的命中位置。我们通过对合成数据集的综合分析和对对象识别的感知研究来验证该技术的有效性。我们还提出了一项研究,在相同的参数估计任务上建立人类的表现进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio-Material Reconstruction for Virtualized Reality Using a Probabilistic Damping Model.

Modal sound synthesis has been used to create realistic sounds from rigid-body objects, but requires accurate real-world material parameters. These material parameters can be estimated from recorded sounds of an impacted object, but external factors can interfere with accurate parameter estimation. We present a novel technique for estimating the damping parameters of materials from recorded impact sounds that probabilistically models these external factors. We represent the combined effects of material damping, support damping, and sampling inaccuracies with a probabilistic generative model, then use maximum likelihood estimation to fit a damping model to recorded data. This technique greatly reduces the human effort needed and does not require the precise object geometry or the exact hit location. We validate the effectiveness of this technique with a comprehensive analysis of a synthetic dataset and a perceptual study on object identification. We also present a study establishing human performance on the same parameter estimation task for comparison.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics 工程技术-计算机:软件工程
CiteScore
10.40
自引率
19.20%
发文量
946
审稿时长
4.5 months
期刊介绍: TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信