{"title":"从虚拟体验中学习个人偏好的功能工作空间优化。","authors":"Wei Liang, Jingjing Liu, Yining Lang, Bing Ning, Lap-Fai Yu","doi":"10.1109/TVCG.2019.2898721","DOIUrl":null,"url":null,"abstract":"<p><p>The functionality of a workspace is one of the most important considerations in both virtual world design and interior design. To offer appropriate functionality to the user, designers usually take some general rules into account, e.g., general workflow and average stature of users, which are summarized from the population statistics. Yet, such general rules cannot reflect the personal preferences of a single individual, which vary from person to person. In this paper, we intend to optimize a functional workspace according to the personal preferences of the specific individual who will use it. We come up with an approach to learn the individual's personal preferences from his activities while using a virtual version of the workspace via virtual reality devices. Then, we construct a cost function, which incorporates personal preferences, spatial constraints, pose assessments, and visual field. At last, the cost function is optimized to achieve an optimal layout. To evaluate the approach, we experimented with different settings. The results of the user study show that the workspaces updated in this way better fit the users.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"1836-1845"},"PeriodicalIF":4.7000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2019.2898721","citationCount":"19","resultStr":"{\"title\":\"Functional Workspace Optimization via Learning Personal Preferences from Virtual Experiences.\",\"authors\":\"Wei Liang, Jingjing Liu, Yining Lang, Bing Ning, Lap-Fai Yu\",\"doi\":\"10.1109/TVCG.2019.2898721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The functionality of a workspace is one of the most important considerations in both virtual world design and interior design. To offer appropriate functionality to the user, designers usually take some general rules into account, e.g., general workflow and average stature of users, which are summarized from the population statistics. Yet, such general rules cannot reflect the personal preferences of a single individual, which vary from person to person. In this paper, we intend to optimize a functional workspace according to the personal preferences of the specific individual who will use it. We come up with an approach to learn the individual's personal preferences from his activities while using a virtual version of the workspace via virtual reality devices. Then, we construct a cost function, which incorporates personal preferences, spatial constraints, pose assessments, and visual field. At last, the cost function is optimized to achieve an optimal layout. To evaluate the approach, we experimented with different settings. The results of the user study show that the workspaces updated in this way better fit the users.</p>\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\" \",\"pages\":\"1836-1845\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TVCG.2019.2898721\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2019.2898721\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2019.2898721","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Functional Workspace Optimization via Learning Personal Preferences from Virtual Experiences.
The functionality of a workspace is one of the most important considerations in both virtual world design and interior design. To offer appropriate functionality to the user, designers usually take some general rules into account, e.g., general workflow and average stature of users, which are summarized from the population statistics. Yet, such general rules cannot reflect the personal preferences of a single individual, which vary from person to person. In this paper, we intend to optimize a functional workspace according to the personal preferences of the specific individual who will use it. We come up with an approach to learn the individual's personal preferences from his activities while using a virtual version of the workspace via virtual reality devices. Then, we construct a cost function, which incorporates personal preferences, spatial constraints, pose assessments, and visual field. At last, the cost function is optimized to achieve an optimal layout. To evaluate the approach, we experimented with different settings. The results of the user study show that the workspaces updated in this way better fit the users.
期刊介绍:
TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.