Hong Gao, Yanhong Liu, Jie Ding, Jun Yang, Biao Zhang, Yue Hu, Meiling Ge, Qing Ye
{"title":"高危妊娠生物库冷冻组织的核酸质量控制策略","authors":"Hong Gao, Yanhong Liu, Jie Ding, Jun Yang, Biao Zhang, Yue Hu, Meiling Ge, Qing Ye","doi":"10.1089/bio.2018.0041","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The preservation of placental and fetal tissues will contribute to studying the pathogenesis of high-risk pregnancy diseases. However, few studies have focused on the effects of different preservation methods and cold ischemia time (CIT) on the quality of nucleic acids. An available quality control (QC) strategy will be beneficial to evaluate these effects for high-risk pregnancy biobanks.</p><p><strong>Methods: </strong>We established an evaluation strategy of nucleic acid QC by analyzing total RNA and genomic DNA (gDNA). Through this strategy, the effects of CIT, cryoprotectants (CPAs), and freeze/thaw cycles on the yield and integrity of placental RNA were analyzed. In addition, the effects of CIT on the yield and integrity of fetal DNA were determined.</p><p><strong>Results: </strong>For placental samples, there was no significant difference in RNA integrity (CIT <2 hours). After several freeze/thaw cycles, the RNA quality number values of placental samples in the CPA-free group and in the RNasin (TRIzol) group were decreased. For fetal samples, the DNA integrity of different organs (CIT <24 hours) was completely satisfactory, but it declined with the extension of CIT. Furthermore, different organs had different tolerances to cold ischemia, and the rank was as follows: skin, heart, liver, and placenta. In addition, the content of medium-length (600 bp) and long (1310 bp) fragments of gDNA were mainly reduced with the extension of CIT.</p><p><strong>Conclusion: </strong>The RNA integrity of placental tissue was affected by CIT significantly. It is recommended that placenta should be cryopreserved within 2 hours (4°C) from isolation. To ensure DNA quality of fetal tissues, the samples are suggested to be frozen within 24 hours (4°C) from isolation. On the contrary, if samples have a long CIT, skin is superior to other organs in the aspect of biobanking donor's genetic information.</p>","PeriodicalId":49231,"journal":{"name":"Biopreservation and Biobanking","volume":" ","pages":"18-26"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/bio.2018.0041","citationCount":"2","resultStr":"{\"title\":\"A Nucleic Acid Quality Control Strategy for Frozen Tissues from a Biobank of High-Risk Pregnancy.\",\"authors\":\"Hong Gao, Yanhong Liu, Jie Ding, Jun Yang, Biao Zhang, Yue Hu, Meiling Ge, Qing Ye\",\"doi\":\"10.1089/bio.2018.0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The preservation of placental and fetal tissues will contribute to studying the pathogenesis of high-risk pregnancy diseases. However, few studies have focused on the effects of different preservation methods and cold ischemia time (CIT) on the quality of nucleic acids. An available quality control (QC) strategy will be beneficial to evaluate these effects for high-risk pregnancy biobanks.</p><p><strong>Methods: </strong>We established an evaluation strategy of nucleic acid QC by analyzing total RNA and genomic DNA (gDNA). Through this strategy, the effects of CIT, cryoprotectants (CPAs), and freeze/thaw cycles on the yield and integrity of placental RNA were analyzed. In addition, the effects of CIT on the yield and integrity of fetal DNA were determined.</p><p><strong>Results: </strong>For placental samples, there was no significant difference in RNA integrity (CIT <2 hours). After several freeze/thaw cycles, the RNA quality number values of placental samples in the CPA-free group and in the RNasin (TRIzol) group were decreased. For fetal samples, the DNA integrity of different organs (CIT <24 hours) was completely satisfactory, but it declined with the extension of CIT. Furthermore, different organs had different tolerances to cold ischemia, and the rank was as follows: skin, heart, liver, and placenta. In addition, the content of medium-length (600 bp) and long (1310 bp) fragments of gDNA were mainly reduced with the extension of CIT.</p><p><strong>Conclusion: </strong>The RNA integrity of placental tissue was affected by CIT significantly. It is recommended that placenta should be cryopreserved within 2 hours (4°C) from isolation. To ensure DNA quality of fetal tissues, the samples are suggested to be frozen within 24 hours (4°C) from isolation. On the contrary, if samples have a long CIT, skin is superior to other organs in the aspect of biobanking donor's genetic information.</p>\",\"PeriodicalId\":49231,\"journal\":{\"name\":\"Biopreservation and Biobanking\",\"volume\":\" \",\"pages\":\"18-26\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/bio.2018.0041\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biopreservation and Biobanking\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/bio.2018.0041\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopreservation and Biobanking","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/bio.2018.0041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A Nucleic Acid Quality Control Strategy for Frozen Tissues from a Biobank of High-Risk Pregnancy.
Background: The preservation of placental and fetal tissues will contribute to studying the pathogenesis of high-risk pregnancy diseases. However, few studies have focused on the effects of different preservation methods and cold ischemia time (CIT) on the quality of nucleic acids. An available quality control (QC) strategy will be beneficial to evaluate these effects for high-risk pregnancy biobanks.
Methods: We established an evaluation strategy of nucleic acid QC by analyzing total RNA and genomic DNA (gDNA). Through this strategy, the effects of CIT, cryoprotectants (CPAs), and freeze/thaw cycles on the yield and integrity of placental RNA were analyzed. In addition, the effects of CIT on the yield and integrity of fetal DNA were determined.
Results: For placental samples, there was no significant difference in RNA integrity (CIT <2 hours). After several freeze/thaw cycles, the RNA quality number values of placental samples in the CPA-free group and in the RNasin (TRIzol) group were decreased. For fetal samples, the DNA integrity of different organs (CIT <24 hours) was completely satisfactory, but it declined with the extension of CIT. Furthermore, different organs had different tolerances to cold ischemia, and the rank was as follows: skin, heart, liver, and placenta. In addition, the content of medium-length (600 bp) and long (1310 bp) fragments of gDNA were mainly reduced with the extension of CIT.
Conclusion: The RNA integrity of placental tissue was affected by CIT significantly. It is recommended that placenta should be cryopreserved within 2 hours (4°C) from isolation. To ensure DNA quality of fetal tissues, the samples are suggested to be frozen within 24 hours (4°C) from isolation. On the contrary, if samples have a long CIT, skin is superior to other organs in the aspect of biobanking donor's genetic information.
期刊介绍:
Biopreservation and Biobanking is the first journal to provide a unifying forum for the peer-reviewed communication of recent advances in the emerging and evolving field of biospecimen procurement, processing, preservation and banking, distribution, and use. The Journal publishes a range of original articles focusing on current challenges and problems in biopreservation, and advances in methods to address these issues related to the processing of macromolecules, cells, and tissues for research.
In a new section dedicated to Emerging Markets and Technologies, the Journal highlights the emergence of new markets and technologies that are either adopting or disrupting the biobank framework as they imprint on society. The solutions presented here are anticipated to help drive innovation within the biobank community.
Biopreservation and Biobanking also explores the ethical, legal, and societal considerations surrounding biobanking and biorepository operation. Ideas and practical solutions relevant to improved quality, efficiency, and sustainability of repositories, and relating to their management, operation and oversight are discussed as well.