{"title":"类风湿关节炎患者CD4+ T细胞超增强子表观遗传失调,通过抑制UBASH3A基因产生IL-6。","authors":"Kaoru Yamagata, Shingo Nakayamada, Tong Zhang, Anh Phuong Nguyen, Naoaki Ohkubo, Shigeru Iwata, Shigeaki Kato, Yoshiya Tanaka","doi":"10.1186/s41232-022-00231-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rheumatoid arthritis (RA) is associated with immune dysfunction. UBASH3A as a negative regulator of T cell receptors (TCRs) signaling is a susceptible factor in RA. The aim of this study was to determine the role of UBASH3A in RA pathogenesis, by assessing the role of super-enhancer (SE) in the control of UBASH3A expression in CD4<sup>+</sup> T cells and the contribution of the latter in proinflammatory cytokine production in patients with RA.</p><p><strong>Methods: </strong>UBASH3A mRNA and protein levels were quantified by PCR and western blotting, respectively. The cells were treated with a locked nucleic acid to inhibit enhancer RNA (eRNA) expression. Chromatin immunoprecipitation was used to identify the factors recruited to UBASH3A loci displaying SE architecture. CD4<sup>+</sup> T cells were transfected with UBASH3A plasmids, and cytokine levels were measured by a cytometric bead array.</p><p><strong>Results: </strong>UBASH3A was extracted as a RA susceptibility gene associated with SNPs in the SEs that are highly expressed in CD4<sup>+</sup> T cells by in silico screening. UBASH3A mRNA and protein expression levels were lower in CD4<sup>+</sup> T cells of RA patients than in the control. eRNA_1 and eRNA_3 knockdown reduced UBASH3A mRNA levels. RA patients exhibited accumulation of BTB and CNC homology 2 (BACH2), the silencing transcription factor, at the UBASH3A loci in CD4<sup>+</sup> T cells, but not the SE-defining factor, mediator complex subunit 1 (MED1)/bromodomain 4 (BRD4). However, opposite changes were observed in the control. Stimulation of TCRs expressed on CD4<sup>+</sup> T cells of RA patients resulted in interleukin (IL)-6 production, while UBASH3A over-expression significantly inhibited the production.</p><p><strong>Conclusions: </strong>In RA, transcription of UBASH3A is suppressed via epigenetic regulation of SE in CD4<sup>+</sup> T cells. Low UBASH3A levels result in excessive TCR signal activation with subsequent enhancement of IL-6 production.</p>","PeriodicalId":13588,"journal":{"name":"Inflammation and Regeneration","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632101/pdf/","citationCount":"2","resultStr":"{\"title\":\"IL-6 production through repression of UBASH3A gene via epigenetic dysregulation of super-enhancer in CD4<sup>+</sup> T cells in rheumatoid arthritis.\",\"authors\":\"Kaoru Yamagata, Shingo Nakayamada, Tong Zhang, Anh Phuong Nguyen, Naoaki Ohkubo, Shigeru Iwata, Shigeaki Kato, Yoshiya Tanaka\",\"doi\":\"10.1186/s41232-022-00231-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Rheumatoid arthritis (RA) is associated with immune dysfunction. UBASH3A as a negative regulator of T cell receptors (TCRs) signaling is a susceptible factor in RA. The aim of this study was to determine the role of UBASH3A in RA pathogenesis, by assessing the role of super-enhancer (SE) in the control of UBASH3A expression in CD4<sup>+</sup> T cells and the contribution of the latter in proinflammatory cytokine production in patients with RA.</p><p><strong>Methods: </strong>UBASH3A mRNA and protein levels were quantified by PCR and western blotting, respectively. The cells were treated with a locked nucleic acid to inhibit enhancer RNA (eRNA) expression. Chromatin immunoprecipitation was used to identify the factors recruited to UBASH3A loci displaying SE architecture. CD4<sup>+</sup> T cells were transfected with UBASH3A plasmids, and cytokine levels were measured by a cytometric bead array.</p><p><strong>Results: </strong>UBASH3A was extracted as a RA susceptibility gene associated with SNPs in the SEs that are highly expressed in CD4<sup>+</sup> T cells by in silico screening. UBASH3A mRNA and protein expression levels were lower in CD4<sup>+</sup> T cells of RA patients than in the control. eRNA_1 and eRNA_3 knockdown reduced UBASH3A mRNA levels. RA patients exhibited accumulation of BTB and CNC homology 2 (BACH2), the silencing transcription factor, at the UBASH3A loci in CD4<sup>+</sup> T cells, but not the SE-defining factor, mediator complex subunit 1 (MED1)/bromodomain 4 (BRD4). However, opposite changes were observed in the control. Stimulation of TCRs expressed on CD4<sup>+</sup> T cells of RA patients resulted in interleukin (IL)-6 production, while UBASH3A over-expression significantly inhibited the production.</p><p><strong>Conclusions: </strong>In RA, transcription of UBASH3A is suppressed via epigenetic regulation of SE in CD4<sup>+</sup> T cells. Low UBASH3A levels result in excessive TCR signal activation with subsequent enhancement of IL-6 production.</p>\",\"PeriodicalId\":13588,\"journal\":{\"name\":\"Inflammation and Regeneration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9632101/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation and Regeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s41232-022-00231-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation and Regeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41232-022-00231-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
IL-6 production through repression of UBASH3A gene via epigenetic dysregulation of super-enhancer in CD4+ T cells in rheumatoid arthritis.
Background: Rheumatoid arthritis (RA) is associated with immune dysfunction. UBASH3A as a negative regulator of T cell receptors (TCRs) signaling is a susceptible factor in RA. The aim of this study was to determine the role of UBASH3A in RA pathogenesis, by assessing the role of super-enhancer (SE) in the control of UBASH3A expression in CD4+ T cells and the contribution of the latter in proinflammatory cytokine production in patients with RA.
Methods: UBASH3A mRNA and protein levels were quantified by PCR and western blotting, respectively. The cells were treated with a locked nucleic acid to inhibit enhancer RNA (eRNA) expression. Chromatin immunoprecipitation was used to identify the factors recruited to UBASH3A loci displaying SE architecture. CD4+ T cells were transfected with UBASH3A plasmids, and cytokine levels were measured by a cytometric bead array.
Results: UBASH3A was extracted as a RA susceptibility gene associated with SNPs in the SEs that are highly expressed in CD4+ T cells by in silico screening. UBASH3A mRNA and protein expression levels were lower in CD4+ T cells of RA patients than in the control. eRNA_1 and eRNA_3 knockdown reduced UBASH3A mRNA levels. RA patients exhibited accumulation of BTB and CNC homology 2 (BACH2), the silencing transcription factor, at the UBASH3A loci in CD4+ T cells, but not the SE-defining factor, mediator complex subunit 1 (MED1)/bromodomain 4 (BRD4). However, opposite changes were observed in the control. Stimulation of TCRs expressed on CD4+ T cells of RA patients resulted in interleukin (IL)-6 production, while UBASH3A over-expression significantly inhibited the production.
Conclusions: In RA, transcription of UBASH3A is suppressed via epigenetic regulation of SE in CD4+ T cells. Low UBASH3A levels result in excessive TCR signal activation with subsequent enhancement of IL-6 production.
期刊介绍:
Inflammation and Regeneration is the official journal of the Japanese Society of Inflammation and Regeneration (JSIR). This journal provides an open access forum which covers a wide range of scientific topics in the basic and clinical researches on inflammation and regenerative medicine. It also covers investigations of infectious diseases, including COVID-19 and other emerging infectious diseases, which involve the inflammatory responses.
Inflammation and Regeneration publishes papers in the following categories: research article, note, rapid communication, case report, review and clinical drug evaluation.