Carolyn M Bauer, Michelle A Oranges, Gaylinn Firempong, L Michael Romero
{"title":"慢性压力下皮质酮改变体重,但不改变代谢产物。","authors":"Carolyn M Bauer, Michelle A Oranges, Gaylinn Firempong, L Michael Romero","doi":"10.1086/721297","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractThe stress response is partially mediated by increased levels of circulating glucocorticoids. While the stress response may be adaptive in the short term, chronically elevated levels of glucocorticoids can be pathological. We aimed to verify that chronic stress causes metabolic dysregulation via increased corticosterone (Cort) exposure by monitoring free fatty acid (FFA) concentrations (evidence of fat breakdown), uric acid concentrations (evidence of protein breakdown), and organ weights (furcular fat, abdominal fat, liver, and pectoralis muscle) in chronically stressed juvenile house sparrows (<i>Passer domesticus</i>). The sparrows were chronically stressed for 3 wk by applying a series of rotating mild psychological stressors. One group of birds received injections of a glucocorticoid steroidogenesis inhibitor (mitotane) and a second group received injections of a glucocorticoid receptor antagonist (RU486) halfway through the chronic stress period to test whether glucocorticoids are responsible for protein and fat catabolism during chronic stress. Toward the end of the chronic stress period, mitotane birds increased weight compared to control and RU486 birds. Contrary to expectations, we saw no differences in FFA or uric acid levels between control and mitotane birds, but RU486 temporarily decreased stress-induced uric acid levels. Neither mitotane nor RU486 significantly altered organ weights at the end of the 3 wk. In conclusion, Cort does appear to negatively affect body weight, but the mechanism does not appear to involve increased protein or lipid metabolism.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":" ","pages":"465-473"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Corticosterone Alters Body Weight, but Not Metabolites, during Chronic Stress.\",\"authors\":\"Carolyn M Bauer, Michelle A Oranges, Gaylinn Firempong, L Michael Romero\",\"doi\":\"10.1086/721297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractThe stress response is partially mediated by increased levels of circulating glucocorticoids. While the stress response may be adaptive in the short term, chronically elevated levels of glucocorticoids can be pathological. We aimed to verify that chronic stress causes metabolic dysregulation via increased corticosterone (Cort) exposure by monitoring free fatty acid (FFA) concentrations (evidence of fat breakdown), uric acid concentrations (evidence of protein breakdown), and organ weights (furcular fat, abdominal fat, liver, and pectoralis muscle) in chronically stressed juvenile house sparrows (<i>Passer domesticus</i>). The sparrows were chronically stressed for 3 wk by applying a series of rotating mild psychological stressors. One group of birds received injections of a glucocorticoid steroidogenesis inhibitor (mitotane) and a second group received injections of a glucocorticoid receptor antagonist (RU486) halfway through the chronic stress period to test whether glucocorticoids are responsible for protein and fat catabolism during chronic stress. Toward the end of the chronic stress period, mitotane birds increased weight compared to control and RU486 birds. Contrary to expectations, we saw no differences in FFA or uric acid levels between control and mitotane birds, but RU486 temporarily decreased stress-induced uric acid levels. Neither mitotane nor RU486 significantly altered organ weights at the end of the 3 wk. In conclusion, Cort does appear to negatively affect body weight, but the mechanism does not appear to involve increased protein or lipid metabolism.</p>\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\" \",\"pages\":\"465-473\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/721297\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/721297","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Corticosterone Alters Body Weight, but Not Metabolites, during Chronic Stress.
AbstractThe stress response is partially mediated by increased levels of circulating glucocorticoids. While the stress response may be adaptive in the short term, chronically elevated levels of glucocorticoids can be pathological. We aimed to verify that chronic stress causes metabolic dysregulation via increased corticosterone (Cort) exposure by monitoring free fatty acid (FFA) concentrations (evidence of fat breakdown), uric acid concentrations (evidence of protein breakdown), and organ weights (furcular fat, abdominal fat, liver, and pectoralis muscle) in chronically stressed juvenile house sparrows (Passer domesticus). The sparrows were chronically stressed for 3 wk by applying a series of rotating mild psychological stressors. One group of birds received injections of a glucocorticoid steroidogenesis inhibitor (mitotane) and a second group received injections of a glucocorticoid receptor antagonist (RU486) halfway through the chronic stress period to test whether glucocorticoids are responsible for protein and fat catabolism during chronic stress. Toward the end of the chronic stress period, mitotane birds increased weight compared to control and RU486 birds. Contrary to expectations, we saw no differences in FFA or uric acid levels between control and mitotane birds, but RU486 temporarily decreased stress-induced uric acid levels. Neither mitotane nor RU486 significantly altered organ weights at the end of the 3 wk. In conclusion, Cort does appear to negatively affect body weight, but the mechanism does not appear to involve increased protein or lipid metabolism.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.