Carolyn M Bauer, Michelle A Oranges, Gaylinn Firempong, L Michael Romero
{"title":"慢性压力下皮质酮改变体重,但不改变代谢产物。","authors":"Carolyn M Bauer, Michelle A Oranges, Gaylinn Firempong, L Michael Romero","doi":"10.1086/721297","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractThe stress response is partially mediated by increased levels of circulating glucocorticoids. While the stress response may be adaptive in the short term, chronically elevated levels of glucocorticoids can be pathological. We aimed to verify that chronic stress causes metabolic dysregulation via increased corticosterone (Cort) exposure by monitoring free fatty acid (FFA) concentrations (evidence of fat breakdown), uric acid concentrations (evidence of protein breakdown), and organ weights (furcular fat, abdominal fat, liver, and pectoralis muscle) in chronically stressed juvenile house sparrows (<i>Passer domesticus</i>). The sparrows were chronically stressed for 3 wk by applying a series of rotating mild psychological stressors. One group of birds received injections of a glucocorticoid steroidogenesis inhibitor (mitotane) and a second group received injections of a glucocorticoid receptor antagonist (RU486) halfway through the chronic stress period to test whether glucocorticoids are responsible for protein and fat catabolism during chronic stress. Toward the end of the chronic stress period, mitotane birds increased weight compared to control and RU486 birds. Contrary to expectations, we saw no differences in FFA or uric acid levels between control and mitotane birds, but RU486 temporarily decreased stress-induced uric acid levels. Neither mitotane nor RU486 significantly altered organ weights at the end of the 3 wk. In conclusion, Cort does appear to negatively affect body weight, but the mechanism does not appear to involve increased protein or lipid metabolism.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Corticosterone Alters Body Weight, but Not Metabolites, during Chronic Stress.\",\"authors\":\"Carolyn M Bauer, Michelle A Oranges, Gaylinn Firempong, L Michael Romero\",\"doi\":\"10.1086/721297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractThe stress response is partially mediated by increased levels of circulating glucocorticoids. While the stress response may be adaptive in the short term, chronically elevated levels of glucocorticoids can be pathological. We aimed to verify that chronic stress causes metabolic dysregulation via increased corticosterone (Cort) exposure by monitoring free fatty acid (FFA) concentrations (evidence of fat breakdown), uric acid concentrations (evidence of protein breakdown), and organ weights (furcular fat, abdominal fat, liver, and pectoralis muscle) in chronically stressed juvenile house sparrows (<i>Passer domesticus</i>). The sparrows were chronically stressed for 3 wk by applying a series of rotating mild psychological stressors. One group of birds received injections of a glucocorticoid steroidogenesis inhibitor (mitotane) and a second group received injections of a glucocorticoid receptor antagonist (RU486) halfway through the chronic stress period to test whether glucocorticoids are responsible for protein and fat catabolism during chronic stress. Toward the end of the chronic stress period, mitotane birds increased weight compared to control and RU486 birds. Contrary to expectations, we saw no differences in FFA or uric acid levels between control and mitotane birds, but RU486 temporarily decreased stress-induced uric acid levels. Neither mitotane nor RU486 significantly altered organ weights at the end of the 3 wk. In conclusion, Cort does appear to negatively affect body weight, but the mechanism does not appear to involve increased protein or lipid metabolism.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/721297\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/721297","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Corticosterone Alters Body Weight, but Not Metabolites, during Chronic Stress.
AbstractThe stress response is partially mediated by increased levels of circulating glucocorticoids. While the stress response may be adaptive in the short term, chronically elevated levels of glucocorticoids can be pathological. We aimed to verify that chronic stress causes metabolic dysregulation via increased corticosterone (Cort) exposure by monitoring free fatty acid (FFA) concentrations (evidence of fat breakdown), uric acid concentrations (evidence of protein breakdown), and organ weights (furcular fat, abdominal fat, liver, and pectoralis muscle) in chronically stressed juvenile house sparrows (Passer domesticus). The sparrows were chronically stressed for 3 wk by applying a series of rotating mild psychological stressors. One group of birds received injections of a glucocorticoid steroidogenesis inhibitor (mitotane) and a second group received injections of a glucocorticoid receptor antagonist (RU486) halfway through the chronic stress period to test whether glucocorticoids are responsible for protein and fat catabolism during chronic stress. Toward the end of the chronic stress period, mitotane birds increased weight compared to control and RU486 birds. Contrary to expectations, we saw no differences in FFA or uric acid levels between control and mitotane birds, but RU486 temporarily decreased stress-induced uric acid levels. Neither mitotane nor RU486 significantly altered organ weights at the end of the 3 wk. In conclusion, Cort does appear to negatively affect body weight, but the mechanism does not appear to involve increased protein or lipid metabolism.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.