慢性压力下皮质酮改变体重,但不改变代谢产物。

IF 1.8 3区 生物学 Q3 PHYSIOLOGY
Carolyn M Bauer, Michelle A Oranges, Gaylinn Firempong, L Michael Romero
{"title":"慢性压力下皮质酮改变体重,但不改变代谢产物。","authors":"Carolyn M Bauer,&nbsp;Michelle A Oranges,&nbsp;Gaylinn Firempong,&nbsp;L Michael Romero","doi":"10.1086/721297","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractThe stress response is partially mediated by increased levels of circulating glucocorticoids. While the stress response may be adaptive in the short term, chronically elevated levels of glucocorticoids can be pathological. We aimed to verify that chronic stress causes metabolic dysregulation via increased corticosterone (Cort) exposure by monitoring free fatty acid (FFA) concentrations (evidence of fat breakdown), uric acid concentrations (evidence of protein breakdown), and organ weights (furcular fat, abdominal fat, liver, and pectoralis muscle) in chronically stressed juvenile house sparrows (<i>Passer domesticus</i>). The sparrows were chronically stressed for 3 wk by applying a series of rotating mild psychological stressors. One group of birds received injections of a glucocorticoid steroidogenesis inhibitor (mitotane) and a second group received injections of a glucocorticoid receptor antagonist (RU486) halfway through the chronic stress period to test whether glucocorticoids are responsible for protein and fat catabolism during chronic stress. Toward the end of the chronic stress period, mitotane birds increased weight compared to control and RU486 birds. Contrary to expectations, we saw no differences in FFA or uric acid levels between control and mitotane birds, but RU486 temporarily decreased stress-induced uric acid levels. Neither mitotane nor RU486 significantly altered organ weights at the end of the 3 wk. In conclusion, Cort does appear to negatively affect body weight, but the mechanism does not appear to involve increased protein or lipid metabolism.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":" ","pages":"465-473"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Corticosterone Alters Body Weight, but Not Metabolites, during Chronic Stress.\",\"authors\":\"Carolyn M Bauer,&nbsp;Michelle A Oranges,&nbsp;Gaylinn Firempong,&nbsp;L Michael Romero\",\"doi\":\"10.1086/721297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractThe stress response is partially mediated by increased levels of circulating glucocorticoids. While the stress response may be adaptive in the short term, chronically elevated levels of glucocorticoids can be pathological. We aimed to verify that chronic stress causes metabolic dysregulation via increased corticosterone (Cort) exposure by monitoring free fatty acid (FFA) concentrations (evidence of fat breakdown), uric acid concentrations (evidence of protein breakdown), and organ weights (furcular fat, abdominal fat, liver, and pectoralis muscle) in chronically stressed juvenile house sparrows (<i>Passer domesticus</i>). The sparrows were chronically stressed for 3 wk by applying a series of rotating mild psychological stressors. One group of birds received injections of a glucocorticoid steroidogenesis inhibitor (mitotane) and a second group received injections of a glucocorticoid receptor antagonist (RU486) halfway through the chronic stress period to test whether glucocorticoids are responsible for protein and fat catabolism during chronic stress. Toward the end of the chronic stress period, mitotane birds increased weight compared to control and RU486 birds. Contrary to expectations, we saw no differences in FFA or uric acid levels between control and mitotane birds, but RU486 temporarily decreased stress-induced uric acid levels. Neither mitotane nor RU486 significantly altered organ weights at the end of the 3 wk. In conclusion, Cort does appear to negatively affect body weight, but the mechanism does not appear to involve increased protein or lipid metabolism.</p>\",\"PeriodicalId\":54609,\"journal\":{\"name\":\"Physiological and Biochemical Zoology\",\"volume\":\" \",\"pages\":\"465-473\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological and Biochemical Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/721297\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/721297","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

应激反应部分是由循环糖皮质激素水平升高介导的。虽然应激反应在短期内可能是适应性的,但糖皮质激素水平的长期升高可能是病理性的。我们的目的是通过监测慢性应激幼年家麻雀(Passer domesticus)的游离脂肪酸(FFA)浓度(脂肪分解的证据)、尿酸浓度(蛋白质分解的证据)和器官重量(镰状脂肪、腹部脂肪、肝脏和胸肌),验证慢性应激通过增加皮质酮(Cort)暴露导致代谢失调。通过施加一系列旋转的轻度心理压力源,对麻雀进行3周的慢性应激。一组鸟注射糖皮质激素类固醇生成抑制剂(米托坦),另一组在慢性应激期中途注射糖皮质激素受体拮抗剂(RU486),以测试糖皮质激素是否负责慢性应激期间的蛋白质和脂肪分解代谢。在慢性应激期结束时,与对照组和RU486相比,米托坦鸟类的体重增加了。与预期相反,我们在对照组和米托坦鸟类之间没有看到FFA或尿酸水平的差异,但RU486暂时降低了应激诱导的尿酸水平。在3周结束时,米托坦和RU486均未显著改变器官重量。综上所述,Cort确实对体重有负面影响,但其机制似乎与增加蛋白质或脂质代谢无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corticosterone Alters Body Weight, but Not Metabolites, during Chronic Stress.

AbstractThe stress response is partially mediated by increased levels of circulating glucocorticoids. While the stress response may be adaptive in the short term, chronically elevated levels of glucocorticoids can be pathological. We aimed to verify that chronic stress causes metabolic dysregulation via increased corticosterone (Cort) exposure by monitoring free fatty acid (FFA) concentrations (evidence of fat breakdown), uric acid concentrations (evidence of protein breakdown), and organ weights (furcular fat, abdominal fat, liver, and pectoralis muscle) in chronically stressed juvenile house sparrows (Passer domesticus). The sparrows were chronically stressed for 3 wk by applying a series of rotating mild psychological stressors. One group of birds received injections of a glucocorticoid steroidogenesis inhibitor (mitotane) and a second group received injections of a glucocorticoid receptor antagonist (RU486) halfway through the chronic stress period to test whether glucocorticoids are responsible for protein and fat catabolism during chronic stress. Toward the end of the chronic stress period, mitotane birds increased weight compared to control and RU486 birds. Contrary to expectations, we saw no differences in FFA or uric acid levels between control and mitotane birds, but RU486 temporarily decreased stress-induced uric acid levels. Neither mitotane nor RU486 significantly altered organ weights at the end of the 3 wk. In conclusion, Cort does appear to negatively affect body weight, but the mechanism does not appear to involve increased protein or lipid metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
6.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context. Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信