Aleksandr L Urakov, Natalya A Urakova, Ilnur I Yagudin, Milena D Svetova, Darya O Suntsova
{"title":"COVID-19:人工吸痰、呼吸阻塞法及筛选化脓和抗缺氧药物。","authors":"Aleksandr L Urakov, Natalya A Urakova, Ilnur I Yagudin, Milena D Svetova, Darya O Suntsova","doi":"10.34172/bi.2022.23877","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 causes non-specific pneumonia, which has become a new cause of hypoxia, leading to the death of many patients. Today, there are no effective drugs that provide an urgent increase in blood oxygenation. Therefore, it is urgently necessary to develop drugs to increase blood oxygenation in order to save the lives of patients with the new coronavirus infection. Since hypoxia develops in this disease due to the blockage of respiratory tract with viscous mucus and sputum, an appropriate experimental model is needed for screening and finding new drugs. However this model is yet missing. Therefore, the development of an experimental model of respiratory obstruction by sputum with traces of blood can accelerate the discovery of drugs that eliminate hypoxia and prevent the death of patients with nonspecific pneumonia complicated by respiratory obstruction. The purpose of this letter was to present a model for evaluating the biological activity of drugs, which can become a new vector for the development of effective ways to increase blood oxygenation across pulmonary and save the lives of patients with severe atypical pneumonia complicated by respiratory obstruction in COVID-19.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/7d/bi-12-393.PMC9376158.pdf","citationCount":"4","resultStr":"{\"title\":\"COVID-19: Artificial sputum, respiratory obstruction method and screening of pyolitic and antihypoxic drugs.\",\"authors\":\"Aleksandr L Urakov, Natalya A Urakova, Ilnur I Yagudin, Milena D Svetova, Darya O Suntsova\",\"doi\":\"10.34172/bi.2022.23877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COVID-19 causes non-specific pneumonia, which has become a new cause of hypoxia, leading to the death of many patients. Today, there are no effective drugs that provide an urgent increase in blood oxygenation. Therefore, it is urgently necessary to develop drugs to increase blood oxygenation in order to save the lives of patients with the new coronavirus infection. Since hypoxia develops in this disease due to the blockage of respiratory tract with viscous mucus and sputum, an appropriate experimental model is needed for screening and finding new drugs. However this model is yet missing. Therefore, the development of an experimental model of respiratory obstruction by sputum with traces of blood can accelerate the discovery of drugs that eliminate hypoxia and prevent the death of patients with nonspecific pneumonia complicated by respiratory obstruction. The purpose of this letter was to present a model for evaluating the biological activity of drugs, which can become a new vector for the development of effective ways to increase blood oxygenation across pulmonary and save the lives of patients with severe atypical pneumonia complicated by respiratory obstruction in COVID-19.</p>\",\"PeriodicalId\":48614,\"journal\":{\"name\":\"Bioimpacts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/7d/bi-12-393.PMC9376158.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimpacts\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.34172/bi.2022.23877\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.2022.23877","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
COVID-19: Artificial sputum, respiratory obstruction method and screening of pyolitic and antihypoxic drugs.
COVID-19 causes non-specific pneumonia, which has become a new cause of hypoxia, leading to the death of many patients. Today, there are no effective drugs that provide an urgent increase in blood oxygenation. Therefore, it is urgently necessary to develop drugs to increase blood oxygenation in order to save the lives of patients with the new coronavirus infection. Since hypoxia develops in this disease due to the blockage of respiratory tract with viscous mucus and sputum, an appropriate experimental model is needed for screening and finding new drugs. However this model is yet missing. Therefore, the development of an experimental model of respiratory obstruction by sputum with traces of blood can accelerate the discovery of drugs that eliminate hypoxia and prevent the death of patients with nonspecific pneumonia complicated by respiratory obstruction. The purpose of this letter was to present a model for evaluating the biological activity of drugs, which can become a new vector for the development of effective ways to increase blood oxygenation across pulmonary and save the lives of patients with severe atypical pneumonia complicated by respiratory obstruction in COVID-19.
BioimpactsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍:
BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.