分枝杆菌生长的集合密度依赖同步:BACTEC MGIT 960基于荧光的分析和耦合生物物理和化学过程的数学建模。

IF 2.7 Q3 MICROBIOLOGY
AIMS Microbiology Pub Date : 2022-06-17 eCollection Date: 2022-01-01 DOI:10.3934/microbiol.2022017
Anastasia I Lavrova, Marine Z Dogonadze, Alexander V Sychev, Olga A Manicheva, Eugene B Postnikov
{"title":"分枝杆菌生长的集合密度依赖同步:BACTEC MGIT 960基于荧光的分析和耦合生物物理和化学过程的数学建模。","authors":"Anastasia I Lavrova,&nbsp;Marine Z Dogonadze,&nbsp;Alexander V Sychev,&nbsp;Olga A Manicheva,&nbsp;Eugene B Postnikov","doi":"10.3934/microbiol.2022017","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an analysis of <i>M. tuberculosis</i> growth data obtained using the BACTEC MGIT 960 system and respective mathematical models. The system is based on the detection of a decrease in oxygen level in the broth due to the bacterial respiration. It is shown that recordings sampled with a 1 hour rate provide an opportunity to distinguish between the oxygen consumption of growing cells and active cells division when the density of micro-organisms is sufficient to enter into the synchronized division mode. More specifically, the growth of culture is continuous only with large initial dilutions; otherwise, there are jumps between different growth stages with a time interval of 13-15 h. The combination of the oxygen-quenching kinetics for an analytic reagent and the population growth kinetics resulted in a mathematical model, which consists of mixing Verhulst's and Gompertz's models. The parameters of such mixing and switching between the models' prevalences are discussed with respect to oxygen uptake reactions reflected in the changes in the experimentally registered fluorescence level.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"8 2","pages":"208-226"},"PeriodicalIF":2.7000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329876/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ensemble density-dependent synchronization of mycobacterial growth: BACTEC MGIT 960 fluorescence-based analysis and mathematical modelling of coupled biophysical and chemical processes.\",\"authors\":\"Anastasia I Lavrova,&nbsp;Marine Z Dogonadze,&nbsp;Alexander V Sychev,&nbsp;Olga A Manicheva,&nbsp;Eugene B Postnikov\",\"doi\":\"10.3934/microbiol.2022017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an analysis of <i>M. tuberculosis</i> growth data obtained using the BACTEC MGIT 960 system and respective mathematical models. The system is based on the detection of a decrease in oxygen level in the broth due to the bacterial respiration. It is shown that recordings sampled with a 1 hour rate provide an opportunity to distinguish between the oxygen consumption of growing cells and active cells division when the density of micro-organisms is sufficient to enter into the synchronized division mode. More specifically, the growth of culture is continuous only with large initial dilutions; otherwise, there are jumps between different growth stages with a time interval of 13-15 h. The combination of the oxygen-quenching kinetics for an analytic reagent and the population growth kinetics resulted in a mathematical model, which consists of mixing Verhulst's and Gompertz's models. The parameters of such mixing and switching between the models' prevalences are discussed with respect to oxygen uptake reactions reflected in the changes in the experimentally registered fluorescence level.</p>\",\"PeriodicalId\":46108,\"journal\":{\"name\":\"AIMS Microbiology\",\"volume\":\"8 2\",\"pages\":\"208-226\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/microbiol.2022017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2022017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究分析了使用BACTEC MGIT 960系统和相应的数学模型获得的结核分枝杆菌生长数据。该系统是基于对由于细菌呼吸作用而导致的肉汤中氧气水平下降的检测。结果表明,当微生物密度足以进入同步分裂模式时,以1小时速率采样的记录提供了区分生长细胞耗氧量和活跃细胞分裂的机会。更具体地说,只有在初始稀释度很大的情况下,培养物才能连续生长;将分析试剂的氧猝灭动力学与种群生长动力学相结合,得到了一个混合了Verhulst和Gompertz模型的数学模型。这种混合的参数和切换模式之间的患病率讨论了关于氧摄取反应反映在实验记录的荧光水平的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ensemble density-dependent synchronization of mycobacterial growth: BACTEC MGIT 960 fluorescence-based analysis and mathematical modelling of coupled biophysical and chemical processes.

Ensemble density-dependent synchronization of mycobacterial growth: BACTEC MGIT 960 fluorescence-based analysis and mathematical modelling of coupled biophysical and chemical processes.

Ensemble density-dependent synchronization of mycobacterial growth: BACTEC MGIT 960 fluorescence-based analysis and mathematical modelling of coupled biophysical and chemical processes.

Ensemble density-dependent synchronization of mycobacterial growth: BACTEC MGIT 960 fluorescence-based analysis and mathematical modelling of coupled biophysical and chemical processes.

This study presents an analysis of M. tuberculosis growth data obtained using the BACTEC MGIT 960 system and respective mathematical models. The system is based on the detection of a decrease in oxygen level in the broth due to the bacterial respiration. It is shown that recordings sampled with a 1 hour rate provide an opportunity to distinguish between the oxygen consumption of growing cells and active cells division when the density of micro-organisms is sufficient to enter into the synchronized division mode. More specifically, the growth of culture is continuous only with large initial dilutions; otherwise, there are jumps between different growth stages with a time interval of 13-15 h. The combination of the oxygen-quenching kinetics for an analytic reagent and the population growth kinetics resulted in a mathematical model, which consists of mixing Verhulst's and Gompertz's models. The parameters of such mixing and switching between the models' prevalences are discussed with respect to oxygen uptake reactions reflected in the changes in the experimentally registered fluorescence level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Microbiology
AIMS Microbiology MICROBIOLOGY-
CiteScore
7.00
自引率
2.10%
发文量
22
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信