基于尺寸的循环无细胞DNA分析技术:局限性和临床应用。

Q4 Biochemistry, Genetics and Molecular Biology
Thomas Pataillot-Meakin, Sylvain Ladame, Charlotte Bevan
{"title":"基于尺寸的循环无细胞DNA分析技术:局限性和临床应用。","authors":"Thomas Pataillot-Meakin,&nbsp;Sylvain Ladame,&nbsp;Charlotte Bevan","doi":"10.1615/CritRevOncog.2022043215","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is the second most common malignancy in men worldwide, and incidence is likely to rise in the next decade. The current screening options have limitations and have been shown to result in over-treatment of clinically insignificant disease. New biomarkers and technologies to detect them are therefore needed to better diagnose and stratify patients in primary care. Circulating cell-free DNA (ccfDNA) has gained interest as a potential minimally invasive biomarker, detectable in many bodily fluids (such as blood, urine, and cerebral spinal fluid) and reflecting the mutational landscape in tumors. More recently, the size distribution of ccfDNA fragments has also gained interest as a specific biomarker, where differences in size distribution have been observed between healthy volunteers and cancer patients, resulting in the new field of fragmentomics. Analysis of ccfDNA sizes provides avenues for alternative analytical technologies but commercial options are currently limited. Most focus on mutation detection and are subject to several biases that may affect size distribution. Here, we discuss the available technologies and identify major issues and considerations that may affect their implementation as a clinically useful test based on ccfDNA size profiling.</p>","PeriodicalId":35617,"journal":{"name":"Critical Reviews in Oncogenesis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technologies for Size-Based Analysis of Circulating Cell-Free DNA: Limitations and Clinical Implementation.\",\"authors\":\"Thomas Pataillot-Meakin,&nbsp;Sylvain Ladame,&nbsp;Charlotte Bevan\",\"doi\":\"10.1615/CritRevOncog.2022043215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer is the second most common malignancy in men worldwide, and incidence is likely to rise in the next decade. The current screening options have limitations and have been shown to result in over-treatment of clinically insignificant disease. New biomarkers and technologies to detect them are therefore needed to better diagnose and stratify patients in primary care. Circulating cell-free DNA (ccfDNA) has gained interest as a potential minimally invasive biomarker, detectable in many bodily fluids (such as blood, urine, and cerebral spinal fluid) and reflecting the mutational landscape in tumors. More recently, the size distribution of ccfDNA fragments has also gained interest as a specific biomarker, where differences in size distribution have been observed between healthy volunteers and cancer patients, resulting in the new field of fragmentomics. Analysis of ccfDNA sizes provides avenues for alternative analytical technologies but commercial options are currently limited. Most focus on mutation detection and are subject to several biases that may affect size distribution. Here, we discuss the available technologies and identify major issues and considerations that may affect their implementation as a clinically useful test based on ccfDNA size profiling.</p>\",\"PeriodicalId\":35617,\"journal\":{\"name\":\"Critical Reviews in Oncogenesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Oncogenesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevOncog.2022043215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Oncogenesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevOncog.2022043215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌是全球男性第二大常见恶性肿瘤,未来十年发病率可能会上升。目前的筛查选择有局限性,并已被证明会导致对临床无关紧要的疾病的过度治疗。因此,需要新的生物标志物和检测它们的技术,以便在初级保健中更好地诊断和分层患者。循环无细胞DNA (ccfDNA)作为一种潜在的微创生物标志物已经引起了人们的兴趣,它可以在许多体液(如血液、尿液和脑脊液)中检测到,并反映肿瘤的突变情况。最近,ccfDNA片段的大小分布作为一种特定的生物标志物也引起了人们的兴趣,在健康志愿者和癌症患者之间观察到大小分布的差异,从而产生了片段组学的新领域。ccfDNA大小的分析为替代分析技术提供了途径,但商业选择目前有限。大多数集中于突变检测,并受到一些可能影响大小分布的偏见。在这里,我们讨论了可用的技术,并确定了可能影响其作为基于ccfDNA大小分析的临床有用测试实施的主要问题和考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technologies for Size-Based Analysis of Circulating Cell-Free DNA: Limitations and Clinical Implementation.

Prostate cancer is the second most common malignancy in men worldwide, and incidence is likely to rise in the next decade. The current screening options have limitations and have been shown to result in over-treatment of clinically insignificant disease. New biomarkers and technologies to detect them are therefore needed to better diagnose and stratify patients in primary care. Circulating cell-free DNA (ccfDNA) has gained interest as a potential minimally invasive biomarker, detectable in many bodily fluids (such as blood, urine, and cerebral spinal fluid) and reflecting the mutational landscape in tumors. More recently, the size distribution of ccfDNA fragments has also gained interest as a specific biomarker, where differences in size distribution have been observed between healthy volunteers and cancer patients, resulting in the new field of fragmentomics. Analysis of ccfDNA sizes provides avenues for alternative analytical technologies but commercial options are currently limited. Most focus on mutation detection and are subject to several biases that may affect size distribution. Here, we discuss the available technologies and identify major issues and considerations that may affect their implementation as a clinically useful test based on ccfDNA size profiling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Critical Reviews in Oncogenesis
Critical Reviews in Oncogenesis Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
1.70
自引率
0.00%
发文量
17
期刊介绍: The journal is dedicated to extensive reviews, minireviews, and special theme issues on topics of current interest in basic and patient-oriented cancer research. The study of systems biology of cancer with its potential for molecular level diagnostics and treatment implies competence across the sciences and an increasing necessity for cancer researchers to understand both the technology and medicine. The journal allows readers to adapt a better understanding of various fields of molecular oncology. We welcome articles on basic biological mechanisms relevant to cancer such as DNA repair, cell cycle, apoptosis, angiogenesis, tumor immunology, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信