Yingxu Fang, Jiaxing Wang, Min Zhao, Qinwen Zheng, Changyu Ren, Yuxi Wang* and Jifa Zhang*,
{"title":"靶向蛋白降解在神经退行性疾病治疗中的进展和挑战","authors":"Yingxu Fang, Jiaxing Wang, Min Zhao, Qinwen Zheng, Changyu Ren, Yuxi Wang* and Jifa Zhang*, ","doi":"10.1021/acs.jmedchem.2c00844","DOIUrl":null,"url":null,"abstract":"<p >Neurodegenerative diseases (NDs) are currently incurable diseases that cause progressive degeneration of nerve cells. Many of the disease-causing proteins of NDs are “undruggable” for traditional small-molecule inhibitors (SMIs). None of the compounds that attenuated the amyloid-β (Aβ) accumulation process have entered clinical practice, and many phase III clinical trials of SMIs for Alzheimer’s disease (AD) have failed. In recent years, emerging targeted protein degradation (TPD) technologies such as proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimaeras (LYTACs), and autophagy-targeting chimeras (AUTACs) with TPD-assistive technologies such as click-formed proteolysis-targeting chimeras (CLIPTACs) and deubiquitinase-targeting chimera (DUBTAC) have developed rapidly. <i>In vitro</i> and <i>in vivo</i> experiments have also confirmed that TPD technology can target the degradation of ND pathogenic proteins, bringing hope for the treatment of NDs. Herein, we review the latest TPD technologies, introduce their targets and technical characteristics, and discuss the emerging TPD technologies with potential in ND research, with the hope of providing a new perspective for the development of TPD technology in the NDs field.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"65 17","pages":"11454–11477"},"PeriodicalIF":6.8000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Progress and Challenges in Targeted Protein Degradation for Neurodegenerative Disease Therapy\",\"authors\":\"Yingxu Fang, Jiaxing Wang, Min Zhao, Qinwen Zheng, Changyu Ren, Yuxi Wang* and Jifa Zhang*, \",\"doi\":\"10.1021/acs.jmedchem.2c00844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Neurodegenerative diseases (NDs) are currently incurable diseases that cause progressive degeneration of nerve cells. Many of the disease-causing proteins of NDs are “undruggable” for traditional small-molecule inhibitors (SMIs). None of the compounds that attenuated the amyloid-β (Aβ) accumulation process have entered clinical practice, and many phase III clinical trials of SMIs for Alzheimer’s disease (AD) have failed. In recent years, emerging targeted protein degradation (TPD) technologies such as proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimaeras (LYTACs), and autophagy-targeting chimeras (AUTACs) with TPD-assistive technologies such as click-formed proteolysis-targeting chimeras (CLIPTACs) and deubiquitinase-targeting chimera (DUBTAC) have developed rapidly. <i>In vitro</i> and <i>in vivo</i> experiments have also confirmed that TPD technology can target the degradation of ND pathogenic proteins, bringing hope for the treatment of NDs. Herein, we review the latest TPD technologies, introduce their targets and technical characteristics, and discuss the emerging TPD technologies with potential in ND research, with the hope of providing a new perspective for the development of TPD technology in the NDs field.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"65 17\",\"pages\":\"11454–11477\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c00844\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.2c00844","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Progress and Challenges in Targeted Protein Degradation for Neurodegenerative Disease Therapy
Neurodegenerative diseases (NDs) are currently incurable diseases that cause progressive degeneration of nerve cells. Many of the disease-causing proteins of NDs are “undruggable” for traditional small-molecule inhibitors (SMIs). None of the compounds that attenuated the amyloid-β (Aβ) accumulation process have entered clinical practice, and many phase III clinical trials of SMIs for Alzheimer’s disease (AD) have failed. In recent years, emerging targeted protein degradation (TPD) technologies such as proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimaeras (LYTACs), and autophagy-targeting chimeras (AUTACs) with TPD-assistive technologies such as click-formed proteolysis-targeting chimeras (CLIPTACs) and deubiquitinase-targeting chimera (DUBTAC) have developed rapidly. In vitro and in vivo experiments have also confirmed that TPD technology can target the degradation of ND pathogenic proteins, bringing hope for the treatment of NDs. Herein, we review the latest TPD technologies, introduce their targets and technical characteristics, and discuss the emerging TPD technologies with potential in ND research, with the hope of providing a new perspective for the development of TPD technology in the NDs field.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.