Maria E. P. Emmerich, Anne-Sophie Sinnigen, Peter Neubauer, Mario Birkholz
{"title":"介电分离血细胞的方法","authors":"Maria E. P. Emmerich, Anne-Sophie Sinnigen, Peter Neubauer, Mario Birkholz","doi":"10.1007/s10544-022-00623-1","DOIUrl":null,"url":null,"abstract":"<div><p>Microfluidic dielectrophoretic (DEP) devices enable the label-free separation and isolation of cells based on differences in their electrophysiological properties. The technique can serve as a tool in clinical diagnostics and medical research as it facilitates the analysis of patient-specific blood composition and the detection and isolation of pathogenic cells like circulating tumor cells or malaria-infected erythrocytes. This review compares different microfluidic DEP devices to separate platelets, erythrocytes and leukocytes including their cellular subclasses. An overview and experimental setups of different microfluidic DEP devices for the separation, trapping and isolation or purification of blood cells are detailed with respect to their technical design, electrode configuration, sample preparation, applied voltage and frequency and created DEP field based and related to the separation efficiency. The technique holds the promise that results can quickly be attained in clinical and ambulant settings. In particular, point-of-care-testing scenarios are favored by the extensive miniaturization, which would be enabled by microelectronical integration of DEP devices.\n</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"24 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411249/pdf/","citationCount":"11","resultStr":"{\"title\":\"Dielectrophoretic separation of blood cells\",\"authors\":\"Maria E. P. Emmerich, Anne-Sophie Sinnigen, Peter Neubauer, Mario Birkholz\",\"doi\":\"10.1007/s10544-022-00623-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microfluidic dielectrophoretic (DEP) devices enable the label-free separation and isolation of cells based on differences in their electrophysiological properties. The technique can serve as a tool in clinical diagnostics and medical research as it facilitates the analysis of patient-specific blood composition and the detection and isolation of pathogenic cells like circulating tumor cells or malaria-infected erythrocytes. This review compares different microfluidic DEP devices to separate platelets, erythrocytes and leukocytes including their cellular subclasses. An overview and experimental setups of different microfluidic DEP devices for the separation, trapping and isolation or purification of blood cells are detailed with respect to their technical design, electrode configuration, sample preparation, applied voltage and frequency and created DEP field based and related to the separation efficiency. The technique holds the promise that results can quickly be attained in clinical and ambulant settings. In particular, point-of-care-testing scenarios are favored by the extensive miniaturization, which would be enabled by microelectronical integration of DEP devices.\\n</p></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"24 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411249/pdf/\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-022-00623-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-022-00623-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Microfluidic dielectrophoretic (DEP) devices enable the label-free separation and isolation of cells based on differences in their electrophysiological properties. The technique can serve as a tool in clinical diagnostics and medical research as it facilitates the analysis of patient-specific blood composition and the detection and isolation of pathogenic cells like circulating tumor cells or malaria-infected erythrocytes. This review compares different microfluidic DEP devices to separate platelets, erythrocytes and leukocytes including their cellular subclasses. An overview and experimental setups of different microfluidic DEP devices for the separation, trapping and isolation or purification of blood cells are detailed with respect to their technical design, electrode configuration, sample preparation, applied voltage and frequency and created DEP field based and related to the separation efficiency. The technique holds the promise that results can quickly be attained in clinical and ambulant settings. In particular, point-of-care-testing scenarios are favored by the extensive miniaturization, which would be enabled by microelectronical integration of DEP devices.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.