Jean P Dzoyem, Roland T Tchuenguem, Jamshed Iqbal, Muhammad Arfat Yameen, Abdul Mannan, Irum Shahzadi, Tariq Ismail, Nighat Fatima, Ghulam Murtaza
{"title":"绿色合成前列腺大大麻纳米银及壳聚糖纳米提取物的抗药活性研究。","authors":"Jean P Dzoyem, Roland T Tchuenguem, Jamshed Iqbal, Muhammad Arfat Yameen, Abdul Mannan, Irum Shahzadi, Tariq Ismail, Nighat Fatima, Ghulam Murtaza","doi":"10.1080/21691401.2022.2088546","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to synthesize the silver nanoparticles (SNPs) and loaded chitosan nanoparticles (LCNPs) using <i>Euphorbia prostata</i> based on their anticandidal activity. Antioxidant capacity and the total phenolic and total flavonoid content of plant samples and synthesized nanoparticles (NPs) were also evaluated. SNPs and LCNPs were prepared, respectively using chemical reduction of silver salt solution and ionotropic gelation method. The anticandidal activity was assessed by broth micro-dilution method and the antioxidant activity was determined using free-radical scavenging assays. The synthesized NPs after the optimization process were found to be spherical with sizes ranging from 12 to 100 nm. Spectroscopic analysis of NPs showed the appearance of peaks in prescribed wavelength ranging between 402 and 493 nm. The synthesized NPs showed potent anticandidal activity compared to the free extract. The SNPs formulations NpEPM 7.5 and NpEPMR 7.5, showed significantly low MIC values ranging between 2 and 128 µg/mL. In the case of LCNPs, NpEPM (4:1) and NpEPME (4:1) also showed lower MIC values ranging from 32 to 256 µg/mL. The plant samples as well as NPs showed antioxidant potential. In addition, plant extracts and NPs possess the potent biological potential and can be further investigated through <i>in vivo</i> experiments.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":" ","pages":"188-197"},"PeriodicalIF":4.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anticandidal activity of green synthesised silver nanoparticles and extract loaded chitosan nanoparticles of <i>Euphorbia prostata</i>.\",\"authors\":\"Jean P Dzoyem, Roland T Tchuenguem, Jamshed Iqbal, Muhammad Arfat Yameen, Abdul Mannan, Irum Shahzadi, Tariq Ismail, Nighat Fatima, Ghulam Murtaza\",\"doi\":\"10.1080/21691401.2022.2088546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to synthesize the silver nanoparticles (SNPs) and loaded chitosan nanoparticles (LCNPs) using <i>Euphorbia prostata</i> based on their anticandidal activity. Antioxidant capacity and the total phenolic and total flavonoid content of plant samples and synthesized nanoparticles (NPs) were also evaluated. SNPs and LCNPs were prepared, respectively using chemical reduction of silver salt solution and ionotropic gelation method. The anticandidal activity was assessed by broth micro-dilution method and the antioxidant activity was determined using free-radical scavenging assays. The synthesized NPs after the optimization process were found to be spherical with sizes ranging from 12 to 100 nm. Spectroscopic analysis of NPs showed the appearance of peaks in prescribed wavelength ranging between 402 and 493 nm. The synthesized NPs showed potent anticandidal activity compared to the free extract. The SNPs formulations NpEPM 7.5 and NpEPMR 7.5, showed significantly low MIC values ranging between 2 and 128 µg/mL. In the case of LCNPs, NpEPM (4:1) and NpEPME (4:1) also showed lower MIC values ranging from 32 to 256 µg/mL. The plant samples as well as NPs showed antioxidant potential. In addition, plant extracts and NPs possess the potent biological potential and can be further investigated through <i>in vivo</i> experiments.</p>\",\"PeriodicalId\":8736,\"journal\":{\"name\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"volume\":\" \",\"pages\":\"188-197\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Cells, Nanomedicine, and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21691401.2022.2088546\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2022.2088546","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Anticandidal activity of green synthesised silver nanoparticles and extract loaded chitosan nanoparticles of Euphorbia prostata.
This study aimed to synthesize the silver nanoparticles (SNPs) and loaded chitosan nanoparticles (LCNPs) using Euphorbia prostata based on their anticandidal activity. Antioxidant capacity and the total phenolic and total flavonoid content of plant samples and synthesized nanoparticles (NPs) were also evaluated. SNPs and LCNPs were prepared, respectively using chemical reduction of silver salt solution and ionotropic gelation method. The anticandidal activity was assessed by broth micro-dilution method and the antioxidant activity was determined using free-radical scavenging assays. The synthesized NPs after the optimization process were found to be spherical with sizes ranging from 12 to 100 nm. Spectroscopic analysis of NPs showed the appearance of peaks in prescribed wavelength ranging between 402 and 493 nm. The synthesized NPs showed potent anticandidal activity compared to the free extract. The SNPs formulations NpEPM 7.5 and NpEPMR 7.5, showed significantly low MIC values ranging between 2 and 128 µg/mL. In the case of LCNPs, NpEPM (4:1) and NpEPME (4:1) also showed lower MIC values ranging from 32 to 256 µg/mL. The plant samples as well as NPs showed antioxidant potential. In addition, plant extracts and NPs possess the potent biological potential and can be further investigated through in vivo experiments.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.