COVID-19非临床疗效试验数据实验室信息管理系统。

IF 2.7 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Suhyeon Yoon, Hyuna Noh, Heejin Jin, Sungyoung Lee, Soyul Han, Sung-Hee Kim, Jiseon Kim, Jung Seon Seo, Jeong Jin Kim, In Ho Park, Jooyeon Oh, Joon-Yong Bae, Gee Eun Lee, Sun-Je Woo, Sun-Min Seo, Na-Won Kim, Youn Woo Lee, Hui Jeong Jang, Seung-Min Hong, Se-Hee An, Kwang-Soo Lyoo, Minjoo Yeom, Hanbyeul Lee, Bud Jung, Sun-Woo Yoon, Jung-Ah Kang, Sang-Hyuk Seok, Yu Jin Lee, Seo Yeon Kim, Young Been Kim, Ji-Yeon Hwang, Dain On, Soo-Yeon Lim, Sol Pin Kim, Ji Yun Jang, Ho Lee, Kyoungmi Kim, Hyo-Jung Lee, Hong Bin Kim, Jun Won Park, Dae Gwin Jeong, Daesub Song, Kang-Seuk Choi, Ho-Young Lee, Yang-Kyu Choi, Jung-Ah Choi, Manki Song, Man-Seong Park, Jun-Young Seo, Ki Taek Nam, Jeon-Soo Shin, Sungho Won, Jun-Won Yun, Je Kyung Seong
{"title":"COVID-19非临床疗效试验数据实验室信息管理系统。","authors":"Suhyeon Yoon,&nbsp;Hyuna Noh,&nbsp;Heejin Jin,&nbsp;Sungyoung Lee,&nbsp;Soyul Han,&nbsp;Sung-Hee Kim,&nbsp;Jiseon Kim,&nbsp;Jung Seon Seo,&nbsp;Jeong Jin Kim,&nbsp;In Ho Park,&nbsp;Jooyeon Oh,&nbsp;Joon-Yong Bae,&nbsp;Gee Eun Lee,&nbsp;Sun-Je Woo,&nbsp;Sun-Min Seo,&nbsp;Na-Won Kim,&nbsp;Youn Woo Lee,&nbsp;Hui Jeong Jang,&nbsp;Seung-Min Hong,&nbsp;Se-Hee An,&nbsp;Kwang-Soo Lyoo,&nbsp;Minjoo Yeom,&nbsp;Hanbyeul Lee,&nbsp;Bud Jung,&nbsp;Sun-Woo Yoon,&nbsp;Jung-Ah Kang,&nbsp;Sang-Hyuk Seok,&nbsp;Yu Jin Lee,&nbsp;Seo Yeon Kim,&nbsp;Young Been Kim,&nbsp;Ji-Yeon Hwang,&nbsp;Dain On,&nbsp;Soo-Yeon Lim,&nbsp;Sol Pin Kim,&nbsp;Ji Yun Jang,&nbsp;Ho Lee,&nbsp;Kyoungmi Kim,&nbsp;Hyo-Jung Lee,&nbsp;Hong Bin Kim,&nbsp;Jun Won Park,&nbsp;Dae Gwin Jeong,&nbsp;Daesub Song,&nbsp;Kang-Seuk Choi,&nbsp;Ho-Young Lee,&nbsp;Yang-Kyu Choi,&nbsp;Jung-Ah Choi,&nbsp;Manki Song,&nbsp;Man-Seong Park,&nbsp;Jun-Young Seo,&nbsp;Ki Taek Nam,&nbsp;Jeon-Soo Shin,&nbsp;Sungho Won,&nbsp;Jun-Won Yun,&nbsp;Je Kyung Seong","doi":"10.1186/s42826-022-00127-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research.</p><p><strong>Results: </strong>In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research.</p><p><strong>Conclusions: </strong>This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.</p>","PeriodicalId":17993,"journal":{"name":"Laboratory Animal Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238008/pdf/","citationCount":"1","resultStr":"{\"title\":\"Laboratory information management system for COVID-19 non-clinical efficacy trial data.\",\"authors\":\"Suhyeon Yoon,&nbsp;Hyuna Noh,&nbsp;Heejin Jin,&nbsp;Sungyoung Lee,&nbsp;Soyul Han,&nbsp;Sung-Hee Kim,&nbsp;Jiseon Kim,&nbsp;Jung Seon Seo,&nbsp;Jeong Jin Kim,&nbsp;In Ho Park,&nbsp;Jooyeon Oh,&nbsp;Joon-Yong Bae,&nbsp;Gee Eun Lee,&nbsp;Sun-Je Woo,&nbsp;Sun-Min Seo,&nbsp;Na-Won Kim,&nbsp;Youn Woo Lee,&nbsp;Hui Jeong Jang,&nbsp;Seung-Min Hong,&nbsp;Se-Hee An,&nbsp;Kwang-Soo Lyoo,&nbsp;Minjoo Yeom,&nbsp;Hanbyeul Lee,&nbsp;Bud Jung,&nbsp;Sun-Woo Yoon,&nbsp;Jung-Ah Kang,&nbsp;Sang-Hyuk Seok,&nbsp;Yu Jin Lee,&nbsp;Seo Yeon Kim,&nbsp;Young Been Kim,&nbsp;Ji-Yeon Hwang,&nbsp;Dain On,&nbsp;Soo-Yeon Lim,&nbsp;Sol Pin Kim,&nbsp;Ji Yun Jang,&nbsp;Ho Lee,&nbsp;Kyoungmi Kim,&nbsp;Hyo-Jung Lee,&nbsp;Hong Bin Kim,&nbsp;Jun Won Park,&nbsp;Dae Gwin Jeong,&nbsp;Daesub Song,&nbsp;Kang-Seuk Choi,&nbsp;Ho-Young Lee,&nbsp;Yang-Kyu Choi,&nbsp;Jung-Ah Choi,&nbsp;Manki Song,&nbsp;Man-Seong Park,&nbsp;Jun-Young Seo,&nbsp;Ki Taek Nam,&nbsp;Jeon-Soo Shin,&nbsp;Sungho Won,&nbsp;Jun-Won Yun,&nbsp;Je Kyung Seong\",\"doi\":\"10.1186/s42826-022-00127-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research.</p><p><strong>Results: </strong>In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research.</p><p><strong>Conclusions: </strong>This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.</p>\",\"PeriodicalId\":17993,\"journal\":{\"name\":\"Laboratory Animal Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238008/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laboratory Animal Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42826-022-00127-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Animal Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42826-022-00127-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

背景:随着涉及多个产生数据的组织的大规模研究的数量稳步增加,需要一个通用互操作格式的集成系统。为应对2019年冠状病毒病(COVID-19)大流行,全球正在努力开发疫苗和治疗方法。因此,我们看到COVID-19数据激增,同时参与COVID-19大流行研究的多个机构对互操作性的要求很高。结果:本研究采用实验室信息管理系统(LIMS)的方式,基于web界面,系统管理来自多个机构的各种COVID-19非临床试验数据,包括死亡率、临床体征、体重、体温、器官重量、病毒滴度(病毒复制和病毒RNA)、多器官组织病理学。实施该系统的主要目的是整合、规范和组织多个研究所实验室收集的COVID-19非临床疗效检测数据。6家动物生物安全三级机构证明了该系统的可行性。通过最大限度地开展高质量的协作性非临床研究,可以获得实质性的好处。结论:该LIMS平台可用于未来的疫情,通过系统管理来自非临床动物研究的大量数据,加速医疗产品的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Laboratory information management system for COVID-19 non-clinical efficacy trial data.

Laboratory information management system for COVID-19 non-clinical efficacy trial data.

Laboratory information management system for COVID-19 non-clinical efficacy trial data.

Laboratory information management system for COVID-19 non-clinical efficacy trial data.

Background: As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research.

Results: In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research.

Conclusions: This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
32
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信