使用电子皮肤和矩阵电极的全手电触觉反馈用于高带宽人机接口。

Yahya Abbass, Strahinja Dosen, Lucia Seminara, Maurizio Valle
{"title":"使用电子皮肤和矩阵电极的全手电触觉反馈用于高带宽人机接口。","authors":"Yahya Abbass,&nbsp;Strahinja Dosen,&nbsp;Lucia Seminara,&nbsp;Maurizio Valle","doi":"10.1098/rsta.2021.0017","DOIUrl":null,"url":null,"abstract":"<p><p>Tactile feedback is relevant in a broad range of human-machine interaction systems (e.g. teleoperation, virtual reality and prosthetics). The available tactile feedback interfaces comprise few sensing and stimulation units, which limits the amount of information conveyed to the user. The present study describes a novel technology that relies on distributed sensing and stimulation to convey comprehensive tactile feedback to the user of a robotic end effector. The system comprises six flexible sensing arrays (57 sensors) integrated on the fingers and palm of a robotic hand, embedded electronics (64 recording channels), a multichannel stimulator and seven flexible electrodes (64 stimulation pads) placed on the volar side of the subject's hand. The system was tested in seven subjects asked to recognize contact positions and identify contact sliding on the electronic skin, using distributed anode configuration (DAC) and single dedicated anode configuration. The experiments demonstrated that DAC resulted in substantially better performance. Using DAC, the system successfully translated the contact patterns into electrotactile profiles that the subjects could recognize with satisfactory accuracy ([Formula: see text] for static and [Formula: see text] for dynamic patterns). The proposed system is an important step towards the development of a high-density human-machine interfacing between the user and a robotic hand. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.</p>","PeriodicalId":286094,"journal":{"name":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","volume":" ","pages":"20210017"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Full-hand electrotactile feedback using electronic skin and matrix electrodes for high-bandwidth human-machine interfacing.\",\"authors\":\"Yahya Abbass,&nbsp;Strahinja Dosen,&nbsp;Lucia Seminara,&nbsp;Maurizio Valle\",\"doi\":\"10.1098/rsta.2021.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tactile feedback is relevant in a broad range of human-machine interaction systems (e.g. teleoperation, virtual reality and prosthetics). The available tactile feedback interfaces comprise few sensing and stimulation units, which limits the amount of information conveyed to the user. The present study describes a novel technology that relies on distributed sensing and stimulation to convey comprehensive tactile feedback to the user of a robotic end effector. The system comprises six flexible sensing arrays (57 sensors) integrated on the fingers and palm of a robotic hand, embedded electronics (64 recording channels), a multichannel stimulator and seven flexible electrodes (64 stimulation pads) placed on the volar side of the subject's hand. The system was tested in seven subjects asked to recognize contact positions and identify contact sliding on the electronic skin, using distributed anode configuration (DAC) and single dedicated anode configuration. The experiments demonstrated that DAC resulted in substantially better performance. Using DAC, the system successfully translated the contact patterns into electrotactile profiles that the subjects could recognize with satisfactory accuracy ([Formula: see text] for static and [Formula: see text] for dynamic patterns). The proposed system is an important step towards the development of a high-density human-machine interfacing between the user and a robotic hand. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.</p>\",\"PeriodicalId\":286094,\"journal\":{\"name\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"volume\":\" \",\"pages\":\"20210017\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical transactions. Series A, Mathematical, physical, and engineering sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

触觉反馈在广泛的人机交互系统(如远程操作,虚拟现实和假肢)中是相关的。可用的触觉反馈界面包含很少的传感和刺激单元,这限制了向用户传达的信息量。本研究描述了一种依靠分布式传感和刺激向机器人末端执行器的用户传递全面触觉反馈的新技术。该系统包括6个柔性传感阵列(57个传感器),集成在机械人手的手指和手掌上,嵌入式电子设备(64个记录通道),一个多通道刺激器和7个柔性电极(64个刺激垫),放置在受试者手的掌侧。采用分布式阳极配置(DAC)和单一专用阳极配置,对7名受试者进行了测试,要求他们识别接触位置和识别电子皮肤上的接触滑动。实验表明,DAC可以显著提高性能。使用DAC,该系统成功地将接触模式转换为被试能够以满意的精度识别的电触觉轮廓(静态模式为[公式:见文],动态模式为[公式:见文])。所提出的系统是向用户和机器人手之间高密度人机接口发展的重要一步。本文是主题“先进神经技术:将创新转化为健康和福祉”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full-hand electrotactile feedback using electronic skin and matrix electrodes for high-bandwidth human-machine interfacing.

Tactile feedback is relevant in a broad range of human-machine interaction systems (e.g. teleoperation, virtual reality and prosthetics). The available tactile feedback interfaces comprise few sensing and stimulation units, which limits the amount of information conveyed to the user. The present study describes a novel technology that relies on distributed sensing and stimulation to convey comprehensive tactile feedback to the user of a robotic end effector. The system comprises six flexible sensing arrays (57 sensors) integrated on the fingers and palm of a robotic hand, embedded electronics (64 recording channels), a multichannel stimulator and seven flexible electrodes (64 stimulation pads) placed on the volar side of the subject's hand. The system was tested in seven subjects asked to recognize contact positions and identify contact sliding on the electronic skin, using distributed anode configuration (DAC) and single dedicated anode configuration. The experiments demonstrated that DAC resulted in substantially better performance. Using DAC, the system successfully translated the contact patterns into electrotactile profiles that the subjects could recognize with satisfactory accuracy ([Formula: see text] for static and [Formula: see text] for dynamic patterns). The proposed system is an important step towards the development of a high-density human-machine interfacing between the user and a robotic hand. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信