水杨酸基深度共晶溶剂的抗阿米巴特性研究——用于研制抗棘阿米巴隐形眼镜消毒液

IF 1.4 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ruqaiyyah Siddiqui , Zinb Makhlouf , Noor Akbar , Mustafa Khamis , Taleb Ibrahim , Amir Sada Khan , Naveed Ahmed Khan
{"title":"水杨酸基深度共晶溶剂的抗阿米巴特性研究——用于研制抗棘阿米巴隐形眼镜消毒液","authors":"Ruqaiyyah Siddiqui ,&nbsp;Zinb Makhlouf ,&nbsp;Noor Akbar ,&nbsp;Mustafa Khamis ,&nbsp;Taleb Ibrahim ,&nbsp;Amir Sada Khan ,&nbsp;Naveed Ahmed Khan","doi":"10.1016/j.molbiopara.2022.111493","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Acanthamoeba castellanii</em></span><span><span><span> is a protist pathogen that can cause sight-threatening </span>keratitis and a fatal infection of the central nervous system, known as </span>granulomatous amoebic encephalitis<span>. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on </span></span><em>A. castellanii</em> were investigated<em>.</em><span><span> These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and </span>cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P &lt; 0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of </span><em>A. castellanii,</em><span> and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid<span>, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against </span></span><em>Acanthamoeba castellanii.</em></p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba\",\"authors\":\"Ruqaiyyah Siddiqui ,&nbsp;Zinb Makhlouf ,&nbsp;Noor Akbar ,&nbsp;Mustafa Khamis ,&nbsp;Taleb Ibrahim ,&nbsp;Amir Sada Khan ,&nbsp;Naveed Ahmed Khan\",\"doi\":\"10.1016/j.molbiopara.2022.111493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><em>Acanthamoeba castellanii</em></span><span><span><span> is a protist pathogen that can cause sight-threatening </span>keratitis and a fatal infection of the central nervous system, known as </span>granulomatous amoebic encephalitis<span>. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on </span></span><em>A. castellanii</em> were investigated<em>.</em><span><span> These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and </span>cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P &lt; 0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of </span><em>A. castellanii,</em><span> and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid<span>, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against </span></span><em>Acanthamoeba castellanii.</em></p></div>\",\"PeriodicalId\":18721,\"journal\":{\"name\":\"Molecular and biochemical parasitology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and biochemical parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166685122000470\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685122000470","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

棘阿米巴是一种原生病原体,可引起威胁视力的角膜炎和致命的中枢神经系统感染,即肉芽肿性阿米巴脑炎。研究了五种丙二酸和水杨酸基深共晶溶剂(DES)对黄颡鱼(A. castellanii)的影响。这些是水杨酸-三辛基膦(DES 1)、水杨酸-三己胺(DES 2)、水杨酸-三辛基胺(DES 3)、丙二酸-三辛基膦(DES 4)和丙二酸-三己胺(DES 5)。实验通过进行阿米巴杀虫、囊化、脱系统、细胞致病性和细胞毒性试验来完成。在微摩尔剂量下,溶剂DES 2和DES 3表现出显著的杀阿米巴效果(P <0.05),抑制囊胞和囊胞,破坏了黄刺草细胞介导的细胞致病性,对人细胞的细胞毒性也很小。相反,当单独测试时,这些溶剂的化学成分:水杨酸、三己胺和三辛基胺显示出最小的影响。这些结果非常有希望,据我们所知,这是第一次报道深共晶溶剂对变形虫的影响。这些结果可以应用于开发新型隐形眼镜抗棘阿米巴的新配方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba

Acanthamoeba castellanii is a protist pathogen that can cause sight-threatening keratitis and a fatal infection of the central nervous system, known as granulomatous amoebic encephalitis. In this study, effects of five malonic acid and salicylic acid-based deep eutectic solvents (DES) on A. castellanii were investigated. These are salicylic acid-trioctylphosphine (DES 1), salicylic acid- trihexylamine (DES 2), salicylic acid-trioctylamine (DES 3), malonic acid-trioctylphosphine (DES 4) and malonic acid-trihexylamine (DES 5). The experiments were done by performing amoebicidal, encystment, excystment, cytopathogenicity, and cytotoxicity assays. At micromolar dosage, the solvents DES 2 and DES 3 displayed significant amoebicidal effects (P < 0.05), inhibited encystment and excystment, undermined the cell-mediated cytopathogenicity of A. castellanii, and also displayed minimal cytotoxicity to human cells. Conversely, the chemical components of these solvents: salicylic acid, trihexylamine, and trioctylamine showed minimal effects when tested individually. These results are very promising and to the best of our knowledge, are reported for the first time on the effects of deep eutectic solvents on amoebae. These results can be applied in the development of new formulations of novel contact lens disinfectants against Acanthamoeba castellanii.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
51
审稿时长
63 days
期刊介绍: The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are: • the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances • intermediary metabolism and bioenergetics • drug target characterization and the mode of action of antiparasitic drugs • molecular and biochemical aspects of membrane structure and function • host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules. • analysis of genes and genome structure, function and expression • analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance. • parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules • parasite programmed cell death, development, and cell division at the molecular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信