Qun Tu, Qianqian Zhang, Zhenji Zhang, Daqing Gong, Chenxi Jin
{"title":"预测地铁客流以提供站级服务。","authors":"Qun Tu, Qianqian Zhang, Zhenji Zhang, Daqing Gong, Chenxi Jin","doi":"10.1089/big.2021.0318","DOIUrl":null,"url":null,"abstract":"<p><p>Demand forecasting is one of the managers' concerns in service supply chain management. With accurate passenger flow forecasting, the station-level service suppliers can make better service plans accordingly. However, the existing forecasting model cannot identify the different future passenger flow at different types of stations. As a result, the service suppliers cannot make service plans according to the demands of different stations. In this article, we propose a deep learning architecture called DeepSPF (Deep Learning for Subway Passenger Forecasting) to predict subway passenger flow considering the different functional types of stations. We also propose the sliding long short-term memory (LSTM) neural networks as an important component of our model, combining LSTM and one-dimensional convolution. In the experiments of the Beijing subway, DeepSPF outperforms the baseline models in three-time granularities (10, 15, and 30 minutes). Moreover, a comparison between variants of DeepSPF indicates that, with the information of stations' functional types, DeepSPF has strong robustness when an abnormal situation happens.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"429-445"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Subway Passenger Flow for Station-Level Service Supply.\",\"authors\":\"Qun Tu, Qianqian Zhang, Zhenji Zhang, Daqing Gong, Chenxi Jin\",\"doi\":\"10.1089/big.2021.0318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Demand forecasting is one of the managers' concerns in service supply chain management. With accurate passenger flow forecasting, the station-level service suppliers can make better service plans accordingly. However, the existing forecasting model cannot identify the different future passenger flow at different types of stations. As a result, the service suppliers cannot make service plans according to the demands of different stations. In this article, we propose a deep learning architecture called DeepSPF (Deep Learning for Subway Passenger Forecasting) to predict subway passenger flow considering the different functional types of stations. We also propose the sliding long short-term memory (LSTM) neural networks as an important component of our model, combining LSTM and one-dimensional convolution. In the experiments of the Beijing subway, DeepSPF outperforms the baseline models in three-time granularities (10, 15, and 30 minutes). Moreover, a comparison between variants of DeepSPF indicates that, with the information of stations' functional types, DeepSPF has strong robustness when an abnormal situation happens.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"429-445\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/big.2021.0318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/big.2021.0318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Forecasting Subway Passenger Flow for Station-Level Service Supply.
Demand forecasting is one of the managers' concerns in service supply chain management. With accurate passenger flow forecasting, the station-level service suppliers can make better service plans accordingly. However, the existing forecasting model cannot identify the different future passenger flow at different types of stations. As a result, the service suppliers cannot make service plans according to the demands of different stations. In this article, we propose a deep learning architecture called DeepSPF (Deep Learning for Subway Passenger Forecasting) to predict subway passenger flow considering the different functional types of stations. We also propose the sliding long short-term memory (LSTM) neural networks as an important component of our model, combining LSTM and one-dimensional convolution. In the experiments of the Beijing subway, DeepSPF outperforms the baseline models in three-time granularities (10, 15, and 30 minutes). Moreover, a comparison between variants of DeepSPF indicates that, with the information of stations' functional types, DeepSPF has strong robustness when an abnormal situation happens.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.